K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2021

Bài 2: 

a: Ta có: \(x^2+4x+7\)

\(=x^2+4x+4+3\)

\(=\left(x+2\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi x=-2

4 tháng 10 2020

\(A=x^4-3x^3+4x^2-3x+10=\left(x^4-3x^3+4x^2-3x+1\right)+9=\left(x-1\right)^2\left(x^2-x+1\right)+9\ge9\)(do \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\x^2-x+1>0\forall x\end{cases}}\))

Đẳng thức xảy ra khi x = 1

10 tháng 9 2020

\(A=x^2-6x+10=\left(x-3\right)^2+1\ge1\)

\(\Rightarrow A_{min}=1\Leftrightarrow x=3\)

\(B=4x^2-4x+25=\left(2x-1\right)^2+24\ge24\)

\(\Rightarrow B_{min}=24\Leftrightarrow x=\frac{1}{2}\)

\(C=3x^2+9x+12=3\left(x+\frac{3}{2}\right)^2+\frac{21}{4}\ge\frac{21}{4}\)

\(\Rightarrow C_{min}=\frac{21}{4}\Leftrightarrow x=\frac{-3}{2}\)

\(4x^2+4x+6\)

\(=\left(2x\right)^2+2.2x.1+1+5\)

\(=\left(2x+1\right)^2+5\ge5\)

\(Min=5\Leftrightarrow2x+1=0\Rightarrow x=\frac{-1}{2}\)

\(x^2+6x+11\)

\(=x^2+2.x.3+9+2\)

\(=\left(x+3\right)^2+2\ge2\)

\(Min=2\Leftrightarrow x+3=0\Rightarrow x-3\)

\(x^2-3x+1\)

\(=x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{5}{4}\)

\(=\left(x+\frac{3}{2}\right)^2-\frac{5}{4}\le\frac{-5}{4}\)

\(MIn=\frac{-5}{4}\Leftrightarrow x+\frac{3}{2}=0\Rightarrow x=\frac{-3}{2}\)

3 tháng 8 2016

B = 4x2 + 4x - 6 = (2x)2 + 2.2.x + 1 - 7 = (2x + 1)2 - 7 \(\ge\)-7

             Vậy MinB = -7 khi 2x + 1 = 0 => x = -1/2 

C = x2 + 6x + 11 = x2 + 2.3.x + 9 + 2 = (x + 3)2 + 2 \(\ge\)2

              Vậy MinC = 2 khi x + 3 = 0 => x = -3

D = x2 - 3x + 1 \(=x^2-2.\frac{3}{2}.x+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+1=\left(x-\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)

              Vậy MinD = -5/4 khi x - 3/2 = 0 => x = 3/2

25 tháng 8 2019

\(A=\frac{3\left(x^2-4x+5\right)-5}{x^2-4+5}=3-\frac{5}{\left(x-2\right)^2+1}\ge3-5=-2\)

Dau '=' xay ra khi \(x=2\)

Vay \(A_{min}=-2\)khi \(x=2\)

21 tháng 12 2021

sai r bn ơi