K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 11 2019

\(x-x^2-1=-\left(x^2-x+\frac{1}{4}\right)-\frac{3}{4}=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}< 0\) \(\forall x\)

6 tháng 11 2019

Do x-x\(^2\le0\)\(\left(x^2\ge x\right)\)

---> \(x-x^2-1< 0\forall x\)

Chúc bạn học tốt

31 tháng 10 2017

a) \(x^2-5x+8=\left(x^2-5x+6,25\right)+1,75=\left(x-2,5\right)^2+1,75\ge1,75>0\rightarrowđpcm\)

b) \(-4x^2-4x-2=-\left(4x^2+4x+1\right)-1=-\left(2x+1\right)^2-1\le-1< 0\rightarrowđpcm\)

31 tháng 10 2017

A =x2 -5x +8 >0 với mọi x

= x2-5x+\(\dfrac{25}{4}+\dfrac{7}{4}\)

=\(\left(x-\dfrac{5}{2}\right)^2+\dfrac{7}{4}\)

do \(\left(x-\dfrac{5}{2}\right)^2\ge0\forall x\)

=> \(\left(x-\dfrac{5}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)

=> A luôn lớn hơn 0 vs mọi x

B= -4x2 -4x-2 < 0 với mọi x

=-(4x2+4x+2)

=-4x2-4x-1-1

=-\(\left(4x^2+4x+1+1\right)\)

=-\(\left[4\left(x^2+x+\dfrac{1}{4}\right)+1\right]\)

= -\(\left[4\left(x+\dfrac{1}{2}\right)^2+1\right]\)

=-4\(\left(x+\dfrac{1}{2}\right)^2-1\)

do \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\)

=> -4 \(\left(x+\dfrac{1}{2}\right)^2\le0\)

=> \(-4\left(x+\dfrac{1}{2}\right)^2-1\le-1\)

vậy B luôn nhỏ hơn 0 vs mọi x

30 tháng 9 2020

hơi ngán dạng này :((((

a, \(x^2-3x+5=x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}+5=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\forall x\)

b,

\(x^2-\frac{1}{3}x+\frac{5}{4}=x^2-2.\frac{1}{6}+\frac{1}{36}-\frac{1}{36}+\frac{5}{4}=\left(x-\frac{1}{6}\right)^2+\frac{11}{9}>0\forall x\)

c,

\(x-x^2-3=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\frac{1}{4}-3=-\left(x-\frac{1}{2}\right)^2-\frac{11}{4}< 0\forall x\)d,

\(x-2x^2-\frac{5}{2}=-2\left(x^2-\frac{1}{2}x+\frac{5}{4}\right)=-2\left(x^2-2.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}+\frac{5}{4}\right)=-2\left[\left(x-\frac{1}{4}\right)^2+\frac{19}{16}\right]=-2\left(x-\frac{1}{4}\right)^2-\frac{19}{8}< 0\forall x\)P/s : ko chắc lém :)))

2 tháng 10 2020

cảm ơn bạn nhìuuu 💞

17 tháng 10 2015

Hâm à Vương.Tick rồi bây giờ đến lượt chú.Chú có trả lời ko thì bảo 

17 tháng 10 2015

giúp với http://olm.vn/hoi-dap/question/239353.html

11 tháng 10 2017

\(2x-2x^2-1\)

=\(2\left(x-x^2-\dfrac{1}{2}\right)\)

= \(2\left(-x^2+2.\dfrac{1}{2}x-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{2}\right)\)

= \(2\left[\left(-x^2+2.\dfrac{1}{2}x-\dfrac{1}{4}\right)-\dfrac{1}{4}\right]\)

=\(2\left(-x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}\right)-\dfrac{1}{2}\)

= \(-2\left(x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}\right)-\dfrac{1}{2}\)

= \(\dfrac{-1}{2}-2\left(x-\dfrac{1}{2}\right)^2\)

vậy \(2x-2x^2-1< 0\) với mọi số thực x

12 tháng 10 2017

👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏👏🙇🙇🙇🙇🙇🙇🙇🙇🙇🙇🙇🙇🙇🙇🙇🙇🙇🙇🙇🙇🙇🙇🙇🙇🙇

23 tháng 8 2020

1) \(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)

2) \(B=x^2+6x+11=\left(x+3\right)^2+2\ge2>0\left(\forall x\right)\)

3) \(C=4x^2+4x-2=\left(2x+1\right)^2-2\ge-2\) chưa chắc nhỏ hơn 0

4) \(D=-x^2-6x-11=-\left(x+3\right)^2-2\le-2< 0\left(\forall x\right)\)

5) \(E=-4x^2+4x-2=-\left(2x-1\right)^2-1\le-1< 0\left(\forall x\right)\)

23 tháng 8 2020

1. \(A=x^2+2x+2=\left(x+1\right)^2+1\)

Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(x+1\right)^2+1\ge1\)

=> Đpcm

2. \(B=x^2+6x+11=\left(x+3\right)^2+2\)

Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+2\ge2\)

=> Đpcm

3. \(C=4x^2+4x-2=-\left(4x^2-4x+2\right)\)

\(=-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x-\frac{1}{2}\right)^2+1\ge1\)

\(\Rightarrow-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\le1\)

=> Đpcm

4,5 làm tương tự

Bài 1: 

\(2x^2+8x+30\)

\(=2\left(x^2+4x+15\right)\)

\(=2\left(x^2+4x+4+11\right)\)

\(=2\left(x+2\right)^2+22>0\forall x\)

Bài 2: 

\(-x^2-2x-12\)

\(=-\left(x^2+2x+12\right)\)

\(=-\left(x^2+2x+1+11\right)\)

\(=-\left(x+1\right)^2-11< 0\forall x\)

23 tháng 7 2017

a. \(x^2+3x+5\)

\(=x^2+2.x^2.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)

=> đpcm

23 tháng 7 2017

b. \(4x^2+5x+7\)

\(=\left(2x\right)^2-2.2x.\dfrac{5}{4}+\dfrac{25}{16}+\dfrac{87}{16}\)

= \(\left(2x+\dfrac{5}{4}\right)^2\) + \(\dfrac{87}{16}\) \(\ge\dfrac{87}{16}\)

=> đpcm