K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8

mik sẽ tick cho 1 người làm nhanh và đúng nhất

10 tháng 8

Ta có:

\(\left(\right. a - \frac{1}{3} \left.\right) \left(\right. b + \frac{1}{2} \left.\right) \left(\right. c - 3 \left.\right) = 0\) (1)

Và: \(a + 1 = b + 2 = c + 3\)

\(\Rightarrow a = b + 2 - 1 = b + 1\)

Thay vào (1) ta có:
\(\left(\right. b + 1 - \frac{1}{3} \left.\right) \left(\right. b + \frac{1}{2} \left.\right) \left(\right. c - 3 \left.\right) = 0\)

\(\Rightarrow \left(\right. b + \frac{2}{3} \left.\right) \left(\right. b + \frac{1}{2} \left.\right) \left(\right. c - 3 \left.\right) = 0\) (2)

Mà: \(b + 2 = c + 3\)

\(\Rightarrow c = b + 2 - 3 = b - 1\) 

Thay vào (2) ta có:
\(\left(\right. b + \frac{2}{3} \left.\right) \left(\right. b + \frac{1}{2} \left.\right) \left(\right. b - 1 - 3 \left.\right) = 0\)

\(\Rightarrow \left(\right. b + \frac{2}{3} \left.\right) \left(\right. b + \frac{1}{2} \left.\right) \left(\right. b - 4 \left.\right) = 0\)

\(\Rightarrow \left[\right. b = - \frac{2}{3} \\ b = - \frac{1}{2} \\ b = 4\)

TH1 khi b=\(- \frac{2}{3}\)

\(\Rightarrow a = b + 1 = - \frac{2}{3} + 1 = \frac{1}{3}\)

\(\Rightarrow c = b - 1 = - \frac{2}{3} - 1 = - \frac{5}{3}\)

TH2 khi \(b = - \frac{1}{2}\)

\(\Rightarrow a = b + 1 = - \frac{1}{2} + 1 = \frac{1}{2}\)

\(\Rightarrow c = b - 1 = - \frac{1}{2} - 1 = - \frac{3}{2}\)

TH3 khi \(b = 4\)

\(\Rightarrow a = b + 1 = 4 + 1 = 5\)

\(\Rightarrow c = b - 1 = 4 - 1 = 3\)

sai mình xin lỗi

31 tháng 8 2018

Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Đặt a+b=x;b+c=y;c+a=z

\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)

31 tháng 8 2018

Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)

Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)

27 tháng 6 2021

a, Ta thấy : \(\left\{{}\begin{matrix}\left(2a+1\right)^2\ge0\\\left(b+3\right)^2\ge0\\\left(5c-6\right)^2\ge0\end{matrix}\right.\)\(\forall a,b,c\in R\)

\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\ge0\forall a,b,c\in R\)

\(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\le0\)

Nên trường hợp chỉ xảy ra là : \(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2=0\)

- Dấu " = " xảy ra \(\left\{{}\begin{matrix}2a+1=0\\b+3=0\\5c-6=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{2}\\b=-3\\c=\dfrac{6}{5}\end{matrix}\right.\)

Vậy ...

b,c,d tương tự câu a nha chỉ cần thay số vào là ra ;-;

27 tháng 6 2021

ok

16 tháng 7 2017

Bạn xem lời giải ở đây nhé https://olm.vn/hoi-dap/question/960694.html

16 tháng 7 2017

Another way CLICK HERE

13 tháng 2 2020

a)Áp dụng BĐT Cauchy-Schwarz dạng Engel:

\(VT=\left(\frac{a^4}{a}+\frac{b^4}{b}+\frac{c^4}{c}\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\ge\frac{9\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}\ge\frac{9\left[\frac{\left(a+b+c\right)^2}{3}\right]^2}{\left(a+b+c\right)^2}=\left(a+b+c\right)^2\)

Đẳng thức xảy ra khi \(a=b=c\)

b) \(VT-VP=\left(a+b\right)\left(a-b\right)^2+\left(b+c\right)\left(b-c\right)^2+\left(c+a\right)\left(c-a\right)^2\ge0\)

Đẳng thức xảy ra khi \(a=b=c\)

c) Theo câu b và BĐT Cauchy-Schwarz:

\(\Rightarrow3.3\left(a^3+b^3+c^3\right)\ge3\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

\(\ge3\left(a+b+c\right)\left[\frac{\left(a+b+c\right)^2}{3}\right]=\left(a+b+c\right)^3\)

Đẳng thức xảy ra khi \(a=b=c\)

13 tháng 2 2020

áp dụng bđt cô si có dc k

3 tháng 7 2019

\(3=a+b+c\ge3\sqrt[3]{abc}\)\(\Leftrightarrow\)\(abc\le1\)

\(VT=\frac{a^3\left(a+1\right)+b^3\left(b+1\right)+c^3\left(c+1\right)}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}=\frac{a^4+b^4+c^4+a^3+b^3+c^3}{a+b+c+ab+bc+ca+abc+1}\)

\(\ge\frac{\frac{\left(a^2+b^2+c^2\right)^2}{3}+\frac{\left(a^2+b^2+c^2\right)^2}{a+b+c}}{\frac{\left(a+b+c\right)^2}{3}+5}=\frac{\frac{\frac{\left(a+b+c\right)^4}{9}}{3}+\frac{\frac{\left(a+b+c\right)^4}{9}}{3}}{8}\)

\(=\frac{\frac{\frac{3^4}{9}}{3}}{4}=\frac{3}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)

2 tháng 7 2019

đề viết gì thế bạn ?