Cho P = 3x4 - 5x3 + 7x2 - 4x + 2 / x2 - x + 1
Tìm GTNN của P
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`#3107.101107`
`A(x) = 3x - 9x^2 + 4x + 5x^3 + 7x^2 + 1`
`= (3x + 4x) - (9x^2 - 7x^2) + 5x^3 + 1`
`= 7x - 2x^2 + 5x^3 + 1`
`B(x) = 5x^3 - 3x^2 + 7x + 10`
`A(x) - B(x) = 7x - 2x^2 + 5x^3 + 1 - (5x^3 - 3x^2 + 7x + 10)`
`= 7x - 2x^2 + 5x^3 + 1 - 5x^3 + 3x^2 - 7x - 10`
`= (7x - 7x) + (3x^2 - 2x^2) + (5x^3 - 5x^3) - (10 - 1)`
`= x^2 - 9`
`=> C(x) = x^2 - 9`
`C(x) = 0`
`=> x^2 - 9 = 0`
`=> x^2 = 9 => x^2 = (+-3)^2 => x = +-3`
Vậy, nghiệm của đa thức `C(x)` là `x \in {3; -3}.`
Đặt \(\left\{{}\begin{matrix}x+\sqrt{x^2+1}=a>0\\y+\sqrt{y^2+1}=b>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\sqrt{x^2+1}=a-x\\\sqrt{y^2+1}=b-y\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2ax=a^2-1\\2by=b^2-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{a^2-1}{2a}\\y=\dfrac{b^2-1}{2b}\end{matrix}\right.\)
\(\Rightarrow\left(\dfrac{a^2-1}{2a}+\sqrt{\left(\dfrac{b^2-1}{2b}\right)+1}\right)\left(\dfrac{b^2-1}{2b}+\sqrt{\left(\dfrac{a^2-1}{2a}\right)+1}\right)=1\)
\(\Rightarrow\left(\dfrac{a^2-1}{2a}+\dfrac{b^2+1}{2b}\right)\left(\dfrac{b^2-1}{2b}+\dfrac{a^2+1}{2a}\right)=1\)
\(\Rightarrow\left(\dfrac{a+b}{2}+\dfrac{a-b}{2ab}\right)\left(\dfrac{a+b}{2}-\dfrac{a-b}{2ab}\right)=\dfrac{4ab}{4ab}=\dfrac{\left(a+b\right)^2}{4ab}-\dfrac{\left(a-b\right)^2}{4ab}\)
\(\Rightarrow\dfrac{\left(a+b\right)^2}{4}-\dfrac{\left(a+b\right)^2}{4ab}-\dfrac{\left(a-b\right)^2}{4\left(ab\right)^2}+\dfrac{\left(a-b\right)^2}{4ab}=0\)
\(\Rightarrow\dfrac{\left(a+b\right)^2}{4}\left(1-\dfrac{1}{ab}\right)+\dfrac{\left(a-b\right)^2}{4ab}\left(1-\dfrac{1}{ab}\right)=0\)
\(\Rightarrow\left(1-\dfrac{1}{ab}\right)\left(\dfrac{\left(a+b\right)^2}{4}+\dfrac{\left(a-b\right)^2}{4ab}\right)=0\)
\(\Rightarrow1-\dfrac{1}{ab}=0\Rightarrow ab=1\)
\(\Rightarrow\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)
\(\Rightarrow x+y=0\Rightarrow y=-x\)
\(P=2\left(x^2+\left(-x\right)^2\right)+0=4x^2\ge0\)
Dấu "=" xảy ra khi \(x=y=0\)
\(A=3x^5-3x^4+5x^3-x^2+5x+2\)
\(\text{Thay x=-1 vào biểu thức A,ta được:}\)
\(A=3.\left(-1\right)^5-3.\left(-1\right)^4+5.\left(-1\right)^3-\left(-1\right)^2+5.\left(-1\right)+2\)
\(A=3.\left(-1\right)-3.1+5.\left(-1\right)-1+5.\left(-1\right)+2\)
\(A=\left(-3\right)-3+\left(-5\right)-1+\left(-5\right)+2\)
\(A=\left(-6\right)+\left(-5\right)-1+\left(-5\right)+2\)
\(A=\left(-11\right)-1+\left(-5\right)+2\)
\(A=\left(-12\right)+\left(-5\right)+2\)
\(A=\left(-17\right)+2=-15\)
A = \(4x^2-3x+7x^2+2x-5\)
\(11x^2-3x+2x-5\)
\(11x^2-x-5\)
B = \(3x+7y-6x-8+y-2\)
\(3x+7y-6x-10+y\)
\(- 3x+7y-10+y\)
\(3x+8y-10\)
C = chịu
D= \(6x^4-3x^2+x^2-4x+3.4-x+2\)
\(6x^4-3x^2+x^2-4x;12-x+2\\ \)
\(6x^4-3x^2+x^2-4x+14-x\)
\(6x^4-2x^2-4x+14-x\)
\(6x^4-2x^2-5x+14\)
\(P\left(x\right)+Q\left(x\right)=\left(-2x^4-7x^2+3x\right)+\left(5x^3-3x^2+4x-6\right)\)
\(=-2x^4-7x^2+3x+5x^3-3x^2+4x-6\)
\(=-2x^4+5x^3+\left(-7x^2-3x^2\right)+\left(3x+4x\right)-6\)
\(=-2x^4+5x^3-10x^2+7x-6\)
\(P\left(x\right)-Q\left(x\right)=\left(-2x^4-7x^2+3x\right)-\left(5x^3-3x^2+4x-6\right)\)
\(=-2x^4-7x^2+3x-5x^3+3x^2-4x+6\)
\(=-2x^4-5x^3+\left(-7x^2+3x^2\right)+\left(3x-4x\right)+6\)
\(=-2x^4-5x^3-4x^2-x+6\)
Ta có: P(x) - Q(x) + R(x)
=(-5x3 + 7x2 - x + 8) - (4x3 - 7x + 3) - (6x3 + 4x)
=-5x3 + 7x2 - x + 8 - 4x3 + 7x - 3 + 6x3 + 4x
= -3x3 + 7x2 + 10x + 5. Chọn D
Bài 2:
a: Ta có: \(x^2+4x+7\)
\(=x^2+4x+4+3\)
\(=\left(x+2\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi x=-2
\(A=5x^3-7x^2+3x^3-4x^2+x^2-x^3+5x-1=7x^3-10x^2+5x-1\)
\(B=5x^3+3x^2-7x^4-5x^3+4x^2-x^4+3=-8x^4+7x^2+3\)
b: 4x^2-20x+25=(x-3)^2
=>(2x-5)^2=(x-3)^2
=>(2x-5)^2-(x-3)^2=0
=>(2x-5-x+3)(2x-5+x-3)=0
=>(3x-8)(x-2)=0
=>x=8/3 hoặc x=2
c: x+x^2-x^3-x^4=0
=>x(x+1)-x^3(x+1)=0
=>(x+1)(x-x^3)=0
=>(x^3-x)(x+1)=0
=>x(x-1)(x+1)^2=0
=>\(x\in\left\{0;1;-1\right\}\)
d: 2x^3+3x^2+2x+3=0
=>x^2(2x+3)+(2x+3)=0
=>(2x+3)(x^2+1)=0
=>2x+3=0
=>x=-3/2
a: =>x^2(5x-7)-3(5x-7)=0
=>(5x-7)(x^2-3)=0
=>\(x\in\left\{\dfrac{7}{5};\sqrt{3};-\sqrt{3}\right\}\)