Tìm n thuộc N sao cho 2n +3/ n+1 thuộc N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(2n-3⋮n+1\)
\(\Leftrightarrow-5⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{0;-2;4;-6\right\}\)
`2n-3 vdots n+1`
`=>2n+2-5 vdots n+1`
`=>2(n+1)-5 vdots n+1`
`=>5 vdots n+1` do `2(n+1) vdots n+1`
`=>n+1 in Ư(5)={+-1,+-5}`
`=>n in {0,-2,4,-6}`
Vậy `n in {0,-2,4,-6}` thì `2n-3 vdots n+1`
Để \(2n-3⋮n+1\)
<=> \(2n-3-2\left(n+1\right)⋮n+1\)
<=> \(-5⋮n+1\)
<=> \(n+1\inƯ\left(5\right)\)
<=> \(n+1\in\left\{-5;-1;1;5\right\}\)
<=> \(n\in\left\{-6;-2;0;4\right\}\)
\(\Leftrightarrow2n+2-5⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{0;-2;4;-6\right\}\)
Viết thế này dễ nhìn nefk (n+2)/(n-1) =(n-1+3)/(n-1)
=1+3/(n-1) vì n+2 chia cho n-1 =1 dư 3/(n-1)
để n+2 chia hết cho n-1 thì 3/(n-1) là số nguyên
3/(n-1) nguyên khi (n-1) là Ước của 3
khi (n-1) ∈ {±1 ; ±3}
xét TH thôi :
n-1=1 =>n=2 (tm)
n-1=-1=>n=0 (tm)
n-1=3=>n=4 (tm)
n-1=-3=>n=-2 (loại) vì n ∈N
Vậy tại n={0;2;4) thì n+2 chia hết cho n-1
--------------------------------------...
b, (2n+7)/(n+1)=(2n+2+5)/(n+1)=[2(n+1)+5]/(...
2n+7 chia hêt cho n+1 khi 5/(n+1) là số nguyên
khi n+1 ∈ Ước của 5
khi n+1 ∈ {±1 ;±5} mà n ∈N => n ≥0 => n+1 ≥1
vậy n+1 ∈ {1;5}
Xét TH
n+1=1=>n=0 (tm)
n+1=5>n=4(tm)
Vâyj tại n={0;4) thì 2n+7 chia hêt scho n+1
--------------------------------------...
Chúc bạn học tốt
a/ N + 2 chia hết n - 1
có nghĩa là \(\frac{n+2}{n-1}\) là số nguyên
\(\frac{n+2}{n-1}=1+\frac{3}{n-1}\) muốn nguyên thì n-1 thuộc Ư(3)={-1,-3,1,3}
do n thuộc N => cacsc gtri thỏa là {0,2,4}
b/ 2n + 7 chia hết cho n+1 có nghĩa là : \(\frac{2n+7}{n+1}=2+\frac{5}{n+1}\)
là số nguyên
để nguyên thì n+1 thuộc Ư(5)={1,5,-1,-5}
do n thuộc N nên : các giá trị n la : {0;4}
3n+1 chia hết cho 2n+3
=>6n+2 chia hết cho 2n+3
=>6n+9-7 chia hết cho 2n+3
=>7 chia hết cho 2n+3
=>2n+3 thuộc Ư(7)={1;-1;7;-7}
=>n=-1;-2;2;-5
Mà n thuộc N nên: n=2
ta có: (2n+9) chia hết cho (n+1) ( n+1 khác 0)
(n+1) chia hết cho (n+1) => 2.(n+1) chia hết cho ( n+1) <=> (2n=2) chia hết cho (n+1)
=> (2n+9) - (2n+2) chia hết cho (n+1)
<=> 7 chia hết cho (n+1)
=> (n+1) thuộc tập ước của 7 mà n là số tự nhiên=> (n+1)= 1 hoặc 7
=> n = 0 hoặc 6
2n-3 chia hết cho n+1
=> 2n+2-5 chia hết cho n+1
=> 2(n+1)-5 chia hết cho n+1
Mà 2(n+1) chia hết cho n+1 => 5 chia hết cho n+1
=> n+1 thuộc Ư(5) ={1;-1;5;-5}
TH1: n+1=1 => n=0 thuộc Z
TH2: n+1=-1 => n=-2 thuộc Z
TH3: n+1=5 => n=4 thuộc Z
TH4: n+1=-5 => n=-6 thuộc Z
=> n thuộc {0;-2;4;6}
Tìm n thuộc N sao cho 2n + 3 chia hết cho n + 1
\(\Rightarrow2\left(n+1\right)+1⋮n+1\)
MÀ \(n+1⋮n+1\)
\(\Rightarrow2\left(n+1\right)⋮n+1\)
\(\Rightarrow1⋮n+1\)
\(\Rightarrow n+1=1 \)
\(n=1-1\)
\(n=0\)
NHỚ **** NHÉ!!!!!!!!!!!!!!!!
ta thấy n+1 chia hết n+1
=> (2n+3) - (n +1) / n+1 [tính chất chia hết của phép trừ]
= n+2/n+1
vì n+1/n+1
=>(n+2)-(n+1)/n+1
= 1/n+1
=> n+1 thuộc Ư(1)= {1}
=> n+1=1
n =1-1
n=0
vậy n =0
không biết có đúng không nhưng mik đã làm hết khả năng của mik rùi
CHÚC BN HOK TỐT