K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8

A=−9x2+6x−25 có GTLN là −24 tại x=31​.

3 tháng 8

tick cho mình nha

NV
5 tháng 10 2021

Biểu thức này không có min và cũng không có max

26 tháng 8 2023

\(P=\sqrt[]{9x^2-6x+1}+\sqrt[]{25-30x+9x^2}\)

\(\Leftrightarrow P=\sqrt[]{\left(3x-1\right)^2}+\sqrt[]{\left(5-3x\right)^2}\)

\(\Leftrightarrow P=\left|3x-1\right|+\left|5-3x\right|\)

\(\Leftrightarrow P=\left|3x-1\right|+\left|5-3x\right|\ge\left|3x-1+5-3x\right|=4\)

Vậy \(GTNN\left(P\right)=4\)

26 tháng 8 2023

P = 4

Bạn xem lại đề câu d nhé.

5 tháng 8 2021

D=x^2+5y^2-4xy-6x+8y+12

 
14 tháng 8 2017

\(Q=\sqrt{9x^2-6x+1}+\sqrt{25-30+9x^2}+2011\)

\(Q=\sqrt{\left(3x-1\right)^2}+\sqrt{\left(5-3x\right)^2}+2011\)

\(Q=\left|3x-1\right|+\left|5-3x\right|+2011\)

Đặt \(Q'=\left|3x-1\right|+\left|5-3x\right|\ge\left|3x-1+5-3x\right|=4\)

Đẳng thức xảy ra \(\Leftrightarrow\left(3x-1\right)\left(5-3x\right)\ge0\)

\(\Leftrightarrow\frac{1}{3}\le x\le\frac{5}{3}\)

\(\Rightarrow Min_Q=Min_{Q'}+2011=4+2011=2015\)

14 tháng 8 2017

Q = \(\sqrt{9x^2-6x+1}+\sqrt{25-30x+9x^2}+2011\)

Q = \(\sqrt{\left(3x-1\right)^2}+\sqrt{\left(3x-5\right)^2}+2011\)

Q = \(3x-1+3x-5+2011\)

Q = \(6x+2005\)

10 tháng 9 2020

\(A=x^2-6x+10=\left(x-3\right)^2+1\ge1\)

\(\Rightarrow A_{min}=1\Leftrightarrow x=3\)

\(B=4x^2-4x+25=\left(2x-1\right)^2+24\ge24\)

\(\Rightarrow B_{min}=24\Leftrightarrow x=\frac{1}{2}\)

\(C=3x^2+9x+12=3\left(x+\frac{3}{2}\right)^2+\frac{21}{4}\ge\frac{21}{4}\)

\(\Rightarrow C_{min}=\frac{21}{4}\Leftrightarrow x=\frac{-3}{2}\)

9x^2 - 6x + 25 = (3x)^2 - 6x + 1 + 24 = [ (3x)^2 - 2.3x + 1 ] + 24 = ( 3x - 1 )^2 + 24 
Vì: ( 3x - 1 )^2 >= 0 với mọi x 
Nên: ( 3x - 1 )^2 + 24 > 0 với mọi x 
Vậy: GTNN của ( 3x - 1 )^2 + 24 là 24 <=> 3x - 1 = 0 => x = 1/3

Chúc bạn học tốt

9x^2 - 6x + 25 = (3x)^2 - 6x + 1 + 24 = [ (3x)^2 - 2.3x + 1 ] + 24 = ( 3x - 1 )^2 + 24 
Vì: ( 3x - 1 )^2 >= 0 với mọi x 
Nên: ( 3x - 1 )^2 + 24 > 0 với mọi x 
Vậy: GTNN của ( 3x - 1 )^2 + 24 là 24 <=> 3x - 1 = 0 => x = 1/3

20 tháng 8 2018

+) ta có : \(E=3x^2-6x+15=3\left(x^2-2x+1\right)+12\)

\(=3\left(x-1\right)^2+12\ge12\) \(\Rightarrow E_{min}=12\) khi \(x=1\)

+) ta có : \(F=5x^2+6x-12=5\left(x^2+\dfrac{6}{5}x+\dfrac{9}{25}\right)-\dfrac{69}{5}\)

\(=5\left(x+\dfrac{3}{5}\right)^2-\dfrac{69}{5}\ge\dfrac{-69}{5}\) \(\Rightarrow F_{min}=-\dfrac{69}{5}\) khi \(x=\dfrac{-3}{5}\)

+) ta có : \(G=4x^2-4x+25=4\left(x^2-x+\dfrac{1}{4}\right)+24\)

\(=4\left(x-\dfrac{1}{2}\right)^2+24\ge24\) \(\Rightarrow G_{min}=24\) khi \(x=\dfrac{1}{2}\)

+) ta có : \(H=9x^2+6x^2+4=15x^2+4\ge4\)

\(\Rightarrow H_{min}=4\) khi \(x=0\)

21 tháng 8 2018

Tìm GTNN

E=3x^2-6x+15

F= 5x^2+6x-12

G=4x^2-4x+25

H=9x^2+6x^2+4

AH
Akai Haruma
Giáo viên
6 tháng 11 2023

Lời giải:

$A=(9x^2+6xy+y^2)+y^2-6x+4y+17$

$=(3x+y)^2-2(3x+y)+y^2+6y+17$

$=(3x+y)^2-2(3x+y)+1+(y^2+6y+9)+7$

$=(3x+y-1)^2+(y+3)^2+7\geq 0+0+7=7$

Vậy GTNN của biểu thức là $7$. Giá trị này đạt được khi $3x+y-1=y+3=0$

$\Leftrightarrow y=-3; x=\frac{4}{3}$

$A$ không có max bạn nhé.