K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8



=$$2x^3+5x^2+6x+2$$

$$= (2x^3 + x^2) + (4x^2 + 2x) + (4x + 2)$$

$$= x^2(2x+1) + 2x(2x+1) + 2(2x+1)$$

$$= (2x+1)(x^2+2x+2)$$

$$\frac{(2x+1)(x^2+2x+2)}{2x+1} = x^2+2x+2 \quad (\text{với } x \ne -\frac{1}{2})$$


\textbf{Kết quả:} $x^2+2x+2$

2 tháng 8

pls 1 tick ik

5 tháng 12 2018

1/ \(\frac{x-3}{3xy}\)+\(\frac{5x+3}{3xy}\)\(\frac{6x}{3xy}\)=\(\frac{3}{y}\)

2/\(\frac{5x-7}{2x-3}\)+\(\frac{4-3x}{2x-3}\)=\(\frac{2x-3}{2x-3}\)=1

3/\(\frac{11x-7}{3-5x}\)-\(\frac{6x+4}{5x-3}\)=\(\frac{11x-7}{3-5x}\)+\(\frac{6x+4}{3-5x}\)=\(\frac{17x-3}{3-5x}\)

4/\(\frac{3}{2x+6}\)-\(\frac{x-6}{2x^2+6x}\)=\(\frac{3x}{x\left(2x+6\right)}\)-\(\frac{x-6}{x\left(2x+6\right)}\)=\(\frac{2x-6}{x\left(2x+6\right)}\)

5/\(\frac{1}{2x-10}\)+\(\frac{2x}{3x^2-15x}\)=\(\frac{1}{2\left(x-5\right)}\)+\(\frac{2x}{3x\left(x-5\right)}\)=\(\frac{3x}{6x \left(x-5\right)}\)+\(\frac{4x}{6x\left(x-5\right)}\)

=\(\frac{7x}{6x\left(x-5\right)}\)=\(\frac{7}{6\left(x-5\right)}\)

d: =>4x+6=15x-12

=>4x-15x=-12-6=-18

=>-11x=-18

hay x=18/11

e: =>\(45x+27=12+24x\)

=>21x=-15

hay x=-5/7

f: =>35x-5=96-6x

=>41x=101

hay x=101/41

g: =>3(x-3)=90-5(1-2x)

=>3x-9=90-5+10x

=>3x-9=10x+85

=>-7x=94

hay x=-94/7

24 tháng 1 2022

làm rõ ra giúp với ạ, ghi v k hỉu j hết ;-;

19 tháng 7 2016

\(a,\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\) (x khác -3; khác 0)

\(=\frac{3}{2\left(x+3\right)}-\frac{x-6}{2x.\left(x+3\right)}=\frac{3x}{2x.\left(x+3\right)}-\frac{x-6}{2x.\left(x+3\right)}=\frac{3x-x+6}{2x.\left(x+3\right)}=\frac{2x+6}{x.\left(2x+6\right)}=\frac{1}{x}\)

 

19 tháng 7 2016

\(b,\left(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\right):\frac{4x}{10x-5}\) (x khác 0 , khác 1/2 khác -1/2 )

\(=\left(\frac{\left(2x+1\right)^2}{\left(2x-1\right)\left(2x+1\right)}-\frac{\left(2x-1\right)^2}{\left(2x-1\right)\left(2x+1\right)}\right).\frac{10x-5}{4x}\)

\(=\left(\frac{4x^2+4x+1}{\left(2x-1\right)\left(2x+1\right)}-\frac{4x^2-4x+1}{\left(2x-1\right)\left(2x+1\right)}\right).\frac{10x-5}{4x}\)

\(=\frac{8x}{\left(2x-1\right)\left(2x+1\right)}.\frac{5.\left(2x-1\right)}{4x}=\frac{10}{2x+1}\)

d: \(\dfrac{x^4-2x^3+2x-1}{x^2-1}\)

\(=\dfrac{\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)}{x^2-1}\)

\(=x^2-2x+1\)

\(=\left(x-1\right)^2\)

23 tháng 9 2021

sao làm có 1 ý vậy bạn ơi

bucqua

\(\frac{3x}{5x+5y}-\frac{x}{10x-10y}\)

\(=\frac{3x}{5\left(x+y\right)}-\frac{x}{10\left(x+y\right)}\)

\(=\frac{30x\left(x-y\right)-5x\left(x+y\right)}{5\left(x+y\right).10\left(x+y\right)}\)

\(=\frac{5x\left(5x-7y\right)}{50\left(x+y\right)\left(x-y\right)}\)

\(=\frac{x\left(5x-7y\right)}{\left(x+y\right)\left(x-y\right)}\)

chỗ cuối tớ sai 

\(=\frac{x\left(5x-7y\right)}{10\left(x+y\right)\left(x-y\right)}\)

đây nha , e xin lỗi

a) \(\frac{x+3}{x-2}-\frac{2x+3}{x+2}=\frac{2x^2+5x+12}{x^2-4}\)

ĐKXĐ: \(\left\{\begin{matrix}x\ne2\\x\ne-2\end{matrix}\right.\)

\(\Rightarrow\left(x+3\right)\left(x+2\right)-\left(2x+3\right)\left(x-2\right)=2x^2+5x+12\)

\(\Leftrightarrow x^2+2x+3x+6-2x^2+4x-3x+6-2x^2-5x-12=0\)

\(\Leftrightarrow-3x^2+4x=0\)

\(\Leftrightarrow3x^2-4x=0\)

\(\Leftrightarrow x\left(3x-4\right)=0\)

\(\Leftrightarrow\left[\begin{matrix}x=0\\3x-4=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=0\\3x=4\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=0\left(tmđk\right)\\x=\frac{4}{3}\left(tmđk\right)\end{matrix}\right.\)

Vậy: \(x=0;\frac{4}{3}\)

_Chúc bạn học tốt_

b) Ta có: \(\frac{2x+5}{x-3}+\frac{x-1}{x+3}=\frac{x^2+6x+18}{x^2-9}\)

ĐKXĐ: \(\left\{\begin{matrix}x\ne3\\x\ne-3\end{matrix}\right.\)

\(\Leftrightarrow\frac{\left(2x+5\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{\left(x-1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\frac{x^2+6x+18}{\left(x+3\right)\left(x-3\right)}\)

\(\Rightarrow\left(2x+5\right)\left(x+3\right)+\left(x-1\right)\left(x-3\right)=x^2+6x-18\)

\(\Leftrightarrow2x^2+6x+5x+15+x^2-3x-x+3-x^2-6x-18=0\)

\(\Leftrightarrow2x^2+x=0\)

\(\Leftrightarrow x\left(2x+1\right)=0\)

\(\Leftrightarrow\left[\begin{matrix}x=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=0\\2x=-1\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=0\\x=-\frac{1}{2}\end{matrix}\right.\)

Vậy: \(x=0;-\frac{1}{2}\)

_Chúc bạn học tốt_

20 tháng 1 2019

a) <=> \(6x^2-5x+3-2x+3x\left(3-2x\right)=0\)

<=> \(6x^2-5x+3-2x+9x-6x^2=0\)

<=> \(2x+3=0\)

<=> \(x=\frac{-3}{2}\)

b) <=> \(10\left(x-4\right)-2\left(3+2x\right)=20x+4\left(1-x\right)\)

<=> \(10x-40-6-4x=20x+4-4x\)

<=> \(6x-46-16x-4=0\)

<=> \(-10x-50=0\)

<=> \(-10\left(x+5\right)=0\)

<=> \(x+5=0\)

<=> \(x=-5\)

c) <=> \(8x+3\left(3x-5\right)=18\left(2x-1\right)-14\)

<=> \(8x+9x-15=36x-18-14\)

<=> \(8x+9x-36x=+15-18-14\)

<=> \(-19x=-14\)

<=> \(x=\frac{14}{19}\)

d) <=>\(2\left(6x+5\right)-10x-3=8x+2\left(2x+1\right)\)

<=> \(12x+10-10x-3=8x+4x+2\)

<=> \(2x-7=12x+2\)

<=> \(2x-12x=7+2\)

<=> \(-10x=9\)

<=> \(x=\frac{-9}{10}\)

e) <=> \(x^2-16-6x+4=\left(x-4\right)^2\)

<=> \(x^2-6x-12-\left(x-4^2\right)=0\)

<=> \(x^2-6x-12-\left(x^2-8x+16\right)=0\)

<=> \(x^2-6x-12-x^2+8x-16=0\)

<=> \(2x-28=0\)

<=> \(2\left(x-14\right)=0\)

<=> x-14=0

<=> x=14

20 tháng 1 2019

Luffy , cậu sai câu c nhé , kia là -17 ạ => x=17/19