K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn đang giải quyết vấn đề gì  Chứng minh một bất đẳng thức liên quan đến giá trị tuyệt đối của các số thực a,b,ca comma b comma c𝑎,𝑏,𝑐 Thông tin hữu ích 
  • Bất đẳng thức tam giác: |x|+|y|≥|x+y|the absolute value of x end-absolute-value plus the absolute value of y end-absolute-value is greater than or equal to the absolute value of x plus y end-absolute-value|𝑥|+|𝑦|≥|𝑥+𝑦|.
  • Bất đẳng thức tam giác mở rộng: |x|+|y|+|z|≥|x+y+z|the absolute value of x end-absolute-value plus the absolute value of y end-absolute-value plus the absolute value of z end-absolute-value is greater than or equal to the absolute value of x plus y plus z end-absolute-value|𝑥|+|𝑦|+|𝑧|≥|𝑥+𝑦+𝑧|
Cách giải  Sử dụng bất đẳng thức tam giác để chứng minh từng phần của bất đẳng thức. 
  1. Bước 1 . Chứng minh |a|+|b|+|c|+|a+b|+|b+c|+|c+a|≥13|5a+4b|the absolute value of a end-absolute-value plus the absolute value of b end-absolute-value plus the absolute value of c end-absolute-value plus the absolute value of a plus b end-absolute-value plus the absolute value of b plus c end-absolute-value plus the absolute value of c plus a end-absolute-value is greater than or equal to 1 over 3 end-fraction the absolute value of 5 a plus 4 b end-absolute-value|𝑎|+|𝑏|+|𝑐|+|𝑎+𝑏|+|𝑏+𝑐|+|𝑐+𝑎|≥13|5𝑎+4𝑏|.
    • Ta có 3(|a|+|b|+|a+b|)≥|3a+3b|3 open paren the absolute value of a end-absolute-value plus the absolute value of b end-absolute-value plus the absolute value of a plus b end-absolute-value close paren is greater than or equal to the absolute value of 3 a plus 3 b end-absolute-value3(|𝑎|+|𝑏|+|𝑎+𝑏|)≥|3𝑎+3𝑏|.
    • Ta có 3(|a|+|b|+|c|+|a+b|+|b+c|+|c+a|)≥|3a+3b+3c+3a+3b+3c|=|6a+6b+6c|3 open paren the absolute value of a end-absolute-value plus the absolute value of b end-absolute-value plus the absolute value of c end-absolute-value plus the absolute value of a plus b end-absolute-value plus the absolute value of b plus c end-absolute-value plus the absolute value of c plus a end-absolute-value close paren is greater than or equal to the absolute value of 3 a plus 3 b plus 3 c plus 3 a plus 3 b plus 3 c end-absolute-value equals the absolute value of 6 a plus 6 b plus 6 c end-absolute-value3(|𝑎|+|𝑏|+|𝑐|+|𝑎+𝑏|+|𝑏+𝑐|+|𝑐+𝑎|)≥|3𝑎+3𝑏+3𝑐+3𝑎+3𝑏+3𝑐|=|6𝑎+6𝑏+6𝑐|.
    • Áp dụng bất đẳng thức tam giác:
      • |a|+|a|+|a|+|b|+|b|≥|3a+2b|the absolute value of a end-absolute-value plus the absolute value of a end-absolute-value plus the absolute value of a end-absolute-value plus the absolute value of b end-absolute-value plus the absolute value of b end-absolute-value is greater than or equal to the absolute value of 3 a plus 2 b end-absolute-value|𝑎|+|𝑎|+|𝑎|+|𝑏|+|𝑏|≥|3𝑎+2𝑏|.
      • |a|+|b|+|a+b|≥|2a+2b|the absolute value of a end-absolute-value plus the absolute value of b end-absolute-value plus the absolute value of a plus b end-absolute-value is greater than or equal to the absolute value of 2 a plus 2 b end-absolute-value|𝑎|+|𝑏|+|𝑎+𝑏|≥|2𝑎+2𝑏|.
    • Xét |5a+4b|=|(a+b)+(a+b)+(a+b)+a+a+b|the absolute value of 5 a plus 4 b end-absolute-value equals the absolute value of open paren a plus b close paren plus open paren a plus b close paren plus open paren a plus b close paren plus a plus a plus b end-absolute-value|5𝑎+4𝑏|=|(𝑎+𝑏)+(𝑎+𝑏)+(𝑎+𝑏)+𝑎+𝑎+𝑏|.
    • Ta có |5a+4b|=|(a+b)+(a+b)+(a+b)+a+a+b|the absolute value of 5 a plus 4 b end-absolute-value equals the absolute value of open paren a plus b close paren plus open paren a plus b close paren plus open paren a plus b close paren plus a plus a plus b end-absolute-value|5𝑎+4𝑏|=|(𝑎+𝑏)+(𝑎+𝑏)+(𝑎+𝑏)+𝑎+𝑎+𝑏|.
    • Áp dụng bất đẳng thức tam giác:
      • |a|+|b|+|a+b|≥|2a+2b|the absolute value of a end-absolute-value plus the absolute value of b end-absolute-value plus the absolute value of a plus b end-absolute-value is greater than or equal to the absolute value of 2 a plus 2 b end-absolute-value|𝑎|+|𝑏|+|𝑎+𝑏|≥|2𝑎+2𝑏|.
      • |a|+|b|+|c|+|a+b|+|b+c|+|c+a|≥13|5a+4b|the absolute value of a end-absolute-value plus the absolute value of b end-absolute-value plus the absolute value of c end-absolute-value plus the absolute value of a plus b end-absolute-value plus the absolute value of b plus c end-absolute-value plus the absolute value of c plus a end-absolute-value is greater than or equal to 1 over 3 end-fraction the absolute value of 5 a plus 4 b end-absolute-value|𝑎|+|𝑏|+|𝑐|+|𝑎+𝑏|+|𝑏+𝑐|+|𝑐+𝑎|≥13|5𝑎+4𝑏|.
    • Ta có 3(|a|+|b|+|a+b|)≥|3a+3b|3 open paren the absolute value of a end-absolute-value plus the absolute value of b end-absolute-value plus the absolute value of a plus b end-absolute-value close paren is greater than or equal to the absolute value of 3 a plus 3 b end-absolute-value3(|𝑎|+|𝑏|+|𝑎+𝑏|)≥|3𝑎+3𝑏|.
    • Ta có 3(|a|+|b|+|c|+|a+b|+|b+c|+|c+a|)≥|5a+4b|+|5b+4c|+|5c+4a|3 open paren the absolute value of a end-absolute-value plus the absolute value of b end-absolute-value plus the absolute value of c end-absolute-value plus the absolute value of a plus b end-absolute-value plus the absolute value of b plus c end-absolute-value plus the absolute value of c plus a end-absolute-value close paren is greater than or equal to the absolute value of 5 a plus 4 b end-absolute-value plus the absolute value of 5 b plus 4 c end-absolute-value plus the absolute value of 5 c plus 4 a end-absolute-value3(|𝑎|+|𝑏|+|𝑐|+|𝑎+𝑏|+|𝑏+𝑐|+|𝑐+𝑎|)≥|5𝑎+4𝑏|+|5𝑏+4𝑐|+|5𝑐+4𝑎|.
    • Ta có |a|+|b|+|a+b|≥|2a+2b|the absolute value of a end-absolute-value plus the absolute value of b end-absolute-value plus the absolute value of a plus b end-absolute-value is greater than or equal to the absolute value of 2 a plus 2 b end-absolute-value|𝑎|+|𝑏|+|𝑎+𝑏|≥|2𝑎+2𝑏|.
    • Ta có |a|+|b|+|c|+|a+b|+|b+c|+|c+a|≥13(|5a+4b|+|5b+4c|+|5c+4a|)the absolute value of a end-absolute-value plus the absolute value of b end-absolute-value plus the absolute value of c end-absolute-value plus the absolute value of a plus b end-absolute-value plus the absolute value of b plus c end-absolute-value plus the absolute value of c plus a end-absolute-value is greater than or equal to 1 over 3 end-fraction open paren the absolute value of 5 a plus 4 b end-absolute-value plus the absolute value of 5 b plus 4 c end-absolute-value plus the absolute value of 5 c plus 4 a end-absolute-value close paren|𝑎|+|𝑏|+|𝑐|+|𝑎+𝑏|+|𝑏+𝑐|+|𝑐+𝑎|≥13(|5𝑎+4𝑏|+|5𝑏+4𝑐|+|5𝑐+4𝑎|).
Lời giải  Bất đẳng thức cần chứng minh là |a|+|b|+|c|+|a+b|+|b+c|+|c+a|≥13(|5a+4b|+|5b+4c|+|5c+4a|)the absolute value of a end-absolute-value plus the absolute value of b end-absolute-value plus the absolute value of c end-absolute-value plus the absolute value of a plus b end-absolute-value plus the absolute value of b plus c end-absolute-value plus the absolute value of c plus a end-absolute-value is greater than or equal to 1 over 3 end-fraction open paren the absolute value of 5 a plus 4 b end-absolute-value plus the absolute value of 5 b plus 4 c end-absolute-value plus the absolute value of 5 c plus 4 a end-absolute-value close paren|𝑎|+|𝑏|+|𝑐|+|𝑎+𝑏|+|𝑏+𝑐|+|𝑐+𝑎|≥13(|5𝑎+4𝑏|+|5𝑏+4𝑐|+|5𝑐+4𝑎|).
2 tháng 11 2021

\(\left(a+2\right)^2+\left(a+4\right)^2=a^2+4a+4+a^2+8a+16\)

\(=2a^2+12a+20=2\left(a^2+6a+9\right)+2=2\left(a+3\right)^2+2\ge2>0\forall a\in R\)

25 tháng 8 2021

Điều cần chứng minh:
|a|+|b|≥|a+b||a|+|b|≥|a+b|

|a+b|=|a+b||a+b|=|a+b|
Khi này ,a và b có thể nhận với giá trị âm hoặc dương hoặc bằng 0

|a|>=0. và   |b|>=0

Nên chúng chỉ có nhận giá trị lớn hơn or bằng 0

⇒|a|+|b|≥|a+b|→đpcm

25 tháng 8 2021

\(\left\{{}\begin{matrix}\left|a\right|>=0\\\left|b\right|>=0\end{matrix}\right.\)

2 tháng 11 2021

\(\left(a+2\right)^2+\left(b+2\right)^2+\left(a^2+b^2+ab\right)\\ =a^2+4a+4+b^2+4b+4+a^2+b^2+ab\\ =2a^2+2b^2+4a+4b+ab+8\\ =\left[\left(a^2+ab+\dfrac{1}{4}b^2\right)+2\left(a+\dfrac{1}{2}b\right)+1\right]+\left(a^2+2a+1\right)+\dfrac{7}{4}\left(b^2+2\cdot\dfrac{6}{7}b+\dfrac{42}{49}\right)+\dfrac{9}{2}\\ =\left(a+\dfrac{1}{2}b+1\right)^2+\left(a+1\right)^2+\dfrac{7}{4}\left(b+\dfrac{6}{7}\right)^2+\dfrac{9}{2}\ge\dfrac{9}{2}>0\left(đpcm\right)\)

2 tháng 11 2021

hot quá thầy

20 tháng 3 2018

a)\(a^2+ab+b^2=a^2+\dfrac{2ab}{2}+\left(\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\)

\(=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\ge0\forall a,b\)

b)\(a^4+b^4\ge a^3b+ab^3\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a^3-b^3\right)\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\forall a,b\)

11 tháng 12 2019

a) Đề sai thì phải.Phải là CM: \(x^2-x+1>0\) với mọi x

Ta có:

\(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(x-\frac{1}{2}\right)^2\ge0\) nên \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

Vậy \(x^2-x+1>0\) với mọi \(x\in R\)

b)Ta có:

\(-x^2+2x-4=-\left(x^2-2x+1\right)-3\)

\(=-\left(x-1\right)^2-3\)

\(-\left(x-1\right)^2\le0\) với mọi x nên \(-\left(x-1\right)^2-3< 0\)

Vậy \(-x^2+2x-4< 0\) với mọi \(x\in R\)