1+3+5+....+99 CÓ LUỸ THỪA NTN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



A=50+51+...+599
=>5A=5+52+53+...+5100
=>5A-A=4A=(5+52+...+5100)-(50+51+...+599)=5100-1
=>4A+1=5100

a,(2x-1)3 =23+102 b,(3x+1)+(3x+3)+...+(3x+99)=2800
(2x-1)3 =125 3x+1+3x+3+...+3x+99=2800
(2x-1)3=53 ( 3x+3x+.....+3x )+(1+3+...+99)=2800
2x-1=5 gọi A=3x+3x+...+3x ; B=1+3+...+99
2x=5+1 số số hạng của B là : (99-1):2+1=50 ( bằng số số hạng của A)
2x=6 B = (99+1) x 50:2
=2500
x=6:2 ta có: 150x + 2500=2800
x=3 150x=2800-2500
vậy x=3 150x=300
x=300:150
x=2
vậy x=2

A =2+2^1+2^2+2^3+.....+2^99
2A=2^1+2^2+....2^100
2A-A=2^100-2
Vậy A không phải
\(A=2+2^1+2^2+2^3+2^4+...+2^{99}\)
\(2A=2^2+2^2+2^3+2^4+...+2^{99}+2^{100}\)
\(2A-A=\left(2^2+2^2+2^3+2^4+...+2^{99}+2^{100}\right)-\left(2+2^1+2^2+...+2^{99}\right)\)
\(A=2^{100}\)
Vì \(2^{100}\)là lũy thừa của 2 nên A là lũy thừa của 2

3\(^4\)>\(^{4^3}\)
[100-99]\(^{2000}\)>[100+99]\(^0\)( vì theo dạng tổng quát ta có :a\(0\)=1 nên sẽ có điều như tớ làm nhé@@@@@@@@@)
A)Ta co:3^4=81
4^3=64
Vi 64<81
=>3^4>4^3
B)Ta co:(100-99)^2000=1^2000=1
(100+99)^0=199^0=1
Vì:1=1
=>(100-99)^2000=(100+99)^0

a) 2x . 4 = 128
2x = 128 : 4
2x = 32
x = 32 : 2
x = 16
b)x . 17 = x
=> x = 0

Chào bạn, bạn hãy theo dõi lời giải của mình nhé!
C1 : Ta có :
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)
\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)
\(2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)
\(A=2-\frac{1}{2^{2012}}=\frac{2^{2013}}{2^{2012}}-\frac{1}{2^{2012}}=\frac{2^{2013}-1}{2^{2012}}\)
C2 : Ta có :
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)
\(\frac{1}{2}A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{2013}}\)
\(A-\frac{1}{2}A=\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{2013}}\right)\)
\(\frac{1}{2}A=1-\frac{1}{2^{2013}}\)
\(A=\left(1-\frac{1}{2^{2013}}\right).2=1.2-\frac{1}{2^{2013}}.2=2-\frac{1}{2^{2012}}=\frac{2^{2013}}{2^{2012}}-\frac{1}{2^{2012}}=\frac{2^{2013}-1}{2^{2012}}\)
Có gì bạn không hiểu bạn cứ nhắn tin gửi lại mình nhé! Chúc bạn học tốt!
A=﴾ghi lại biieur thức﴿
2A=2+1+1/2+1/2^2+….+1/2^2011
2A‐A=A=﴾2+1+1/2+1/2^2+….+1/2^2011﴿‐﴾1+1/2+1/2^2+...+1/2^2012﴿
A=2‐1/2^201

A=3+32+34+......+399+3100
=>3A= 32+34+......+399+3100+3101
-A=3+32+34+......+399+3100
=>2A=3101-3
=>2A+3=3101
=>2A+3 là 1 lũy thừa của 3.(đpcm)
A = 3 + 32 + 33 + ... + 399 + 3100
3A = 32 + 33 + 34 + ... + 3100 + 3101
3A - A = (32 + 33 + 34 + ... + 3100 + 3101) - (3 + 32 + 33 + ... + 399 + 3100)
2A = 3101 - 3
=> 2A + 3 = 3101
=> đpcm

a)\(\left(\frac{1}{5}\right)^{10}.5^{20}=\left(\frac{1}{5}\right)^{10}.5^{10.2}=\left(\frac{1}{5}\right)^{10}.25^{10}=\left(\frac{1}{5}.5\right)^{10}=1^{10}=1\)
b)\(5^2.3^5.\left(\frac{3}{5}\right)^2=\left(\frac{3}{5}.5\right)^2.3^5=3^2.3^5=3^7\)
c)\(\left(\frac{1}{16}\right)^3:\left(\frac{1}{8}\right)^2=\left(\frac{1}{8}\right)^{2.3}:\left(\frac{1}{8}\right)^2=\left(\frac{1}{8}\right)^{6+2}=\left(\frac{1}{8}\right)^8\)
\(a.\left(\frac{1}{5}\right)^{10}.5^{20}=\left(\frac{1}{5}\right)^{10}.5^{10.2}=\left(\frac{1}{5}\right)^{10}.\left(5^2\right)^{10}=\left(\frac{1}{5}\right)^{10}.25^{10}=\left(\frac{1}{5}.25\right)^{10}=5^{10}.\)
\(b.5^2.3^5.\left(\frac{3}{5}\right)^2=\left[5^2.\left(\frac{3}{5}\right)^2\right].3^5=\left(5.\frac{3}{5}\right)^2.3^5=3^2.3^5=3^7\)\(c.\left(\frac{1}{16}\right)^3:\left(\frac{1}{8}\right)^2=\left[\left(\frac{1}{4}\right)^2\right]^3:\left[\left(\frac{1}{2}\right)^3\right]^2=\left(\frac{1}{4}\right)^6:\left(\frac{1}{2}\right)^6=\left(\frac{1}{4}:\frac{1}{2}\right)^6=\left(\frac{1}{2}\right)^6\)
= 50 mũ 2
= (99+1) + (3+97) +...
= 100×25
=50×50=50^2