K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(A=\frac{19^{16}+1}{19^{17}-1};B=\frac{19^{15}+1}{19^{16}+1}\)

\(19A=\frac{19^{17}+19}{19^{17}-1}=\frac{19^{17}-1+20}{19^{17}-1}=1+\frac{20}{19^{17}-1}\)

\(19B=\frac{19^{16}+19}{19^{16}+1}=\frac{19^{16}+1+18}{19^{16}+1}=1+\frac{18}{19^{16}+1}\)

\(\frac{20}{19^{17}-1}-\frac{18}{19^{16}+1}=\frac{20\cdot\left(19^{16}+1\right)-18\left(19^{17}-1\right)}{\left(19^{16}+1\right)\left(19^{17}-1\right)}\)

\(=\frac{20\cdot19^{16}+20-18\cdot19^{17}+18}{\left(19^{16}+1\right)\left(19^{17}-1\right)}=\frac{19^{16}\left(20-18\cdot19\right)+38}{\left(19^{16}+1\right)\left(19^{17}-1\right)}\)

\(=\frac{-19^{16}\cdot322+38}{\left(19^{16}+1\right)\left(19^{17}-1\right)}<0\)

=>\(\frac{20}{19^{17}-1}<\frac{18}{19^{16}+1}\)

=>\(\frac{20}{19^{17}-1}+1<\frac{18}{19^{16}+1}+1\)

=>19A<19B

=>A<B

16 tháng 7

Ta cần so sánh:

\(\frac{19^{16} + 1}{19^{17} - 1} \text{v} \overset{ˋ}{\text{a}} \frac{19^{15} + 1}{19^{16} + 1} .\)

Xét phân số thứ nhất:

\(\frac{19^{16} + 1}{19^{17} - 1} = \frac{19^{16} + 1}{19 \cdot 19^{16} - 1} \approx \frac{19^{16}}{19 \cdot 19^{16}} = \frac{1}{19} .\)

\(+ 1\)\(- 1\) không làm thay đổi nhiều so với số mũ lớn, nên phân số này gần bằng \(\frac{1}{19}\).

Xét phân số thứ hai:

\(\frac{19^{15} + 1}{19^{16} + 1} = \frac{19^{15} \left(\right. 1 + \frac{1}{19^{15}} \left.\right)}{19^{16} \left(\right. 1 + \frac{1}{19^{16}} \left.\right)} = \frac{1}{19} \cdot \frac{1 + \frac{1}{19^{15}}}{1 + \frac{1}{19^{16}}} .\)

\(\frac{1}{19^{15}}\) nhỏ nhưng lớn hơn \(\frac{1}{19^{16}}\), nên:

\(\frac{1 + \frac{1}{19^{15}}}{1 + \frac{1}{19^{16}}} > 1.\)

→ Nên:

\(\frac{19^{15} + 1}{19^{16} + 1} > \frac{1}{19} .\)
Kết luận:

\(\boxed{\frac{19^{16} + 1}{19^{17} - 1} < \frac{19^{15} + 1}{19^{16} + 1} .}\)

→ Vì phân số thứ nhất xấp xỉ \(\frac{1}{19}\) còn phân số thứ hai lớn hơn \(\frac{1}{19}\).

6 tháng 7 2021

\(\frac{x}{19}=\frac{19^{17}+1}{19^{17}+19}=1-\frac{18}{19^{17}+19}\)

\(\frac{y}{19}=\frac{19^{16}+1}{19^{16}+19}=1-\frac{18}{19^{16}+19}\)

Nhận thấy 1917 + 19 > 1916 + 19

=> \(\frac{18}{19^{17}+19}< \frac{18}{19^{16}+19}\)

=> \(-\frac{18}{19^{17}+19}>-\frac{18}{19^{16}+19}\)

=> \(1-\frac{18}{19^{17}+19}>1-\frac{18}{19^{16}+19}\)

=> \(\frac{x}{19}>\frac{y}{19}\)

=> x > y

Vậy x > y

Ta có : \(\frac{x}{19}=\frac{19^{17}+1}{19^{17}+19}=1-\frac{18}{19^{17}+19}\)

\(\frac{y}{19}=\frac{19^{16}+1}{19^{16}+19}=1-\frac{18}{19^{16}+19}\)

\(\frac{18}{19^{17}+19}< \frac{18}{19^{16}+19}\)\(\Rightarrow\frac{x}{19}>\frac{y}{19}\)

mà \(x,y>0\)

\(\Rightarrow x>y\)

23 tháng 5 2017

Ta có:

\(A=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{3999.4000}}\)

\(=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{3999}-\frac{1}{4000}}\)

\(=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\left(1+\frac{1}{3}+...+\frac{1}{3999}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{4000}\right)}\)

\(=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3999}+\frac{1}{4000}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{4000}\right)}\)

\(=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3999}+\frac{1}{4000}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2000}\right)}\)

\(=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}=1\)

Ta lại có: 

\(B=\frac{\left(17+1\right)\left(\frac{17}{2}+1\right)...\left(\frac{17}{19}+1\right)}{\left(1+\frac{19}{17}\right)\left(1+\frac{19}{16}\right)...\left(1+19\right)}\)

\(=\frac{\frac{18}{1}.\frac{19}{2}.\frac{20}{3}...\frac{36}{19}}{\frac{36}{17}.\frac{35}{16}.\frac{34}{15}...\frac{20}{1}}\)

\(=\frac{1.2.3...36}{1.2.3...36}=1\)

Từ đây ta suy ra được

\(A-B=1-1=0\)

23 tháng 5 2017

BAN  CO THE TINH RO BIEU THUC B KO?

29 tháng 6 2018

Từ bé đến lớn : 13/14;14/15;15/16;16/17;17/18;18/19;19/20

Chúc bạn học tốt nhé!!!

5 tháng 2 2018

-5 phan14 và 30 phân -84 có bằng nhau không tại sao

27 tháng 2 2019

\(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+....+\frac{1}{20}\)

\(=\left(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\right)\)

\(>\frac{1}{15}\cdot5+\frac{1}{20}\cdot5\)

\(=\frac{1}{3}+\frac{1}{4}\)

\(=\frac{7}{12}>\frac{6}{12}=\frac{1}{2}\)

\(\Rightarrow S>\frac{1}{2}\)

Bài làm

Ta có: 

\(\frac{1}{11}>\frac{1}{20}\)\(\frac{1}{12}>\frac{1}{20}\)\(\frac{1}{13}>\frac{1}{20}\)\(\frac{1}{14}>\frac{1}{20}\)\(\frac{1}{15}>\frac{1}{20}\)\(\frac{1}{16}>\frac{1}{20}\)\(\frac{1}{17}>\frac{1}{20}\)\(\frac{1}{18}>\frac{1}{20}\),\(\frac{1}{19}>\frac{1}{20}\)

=> \(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}\)

hay \(\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}\)

=> \(S=\frac{1}{20}.10=\frac{10}{20}=\frac{1}{2}\)

Do đó: \(S=\frac{1}{2}\)

# Chúc bạn học tốt #

8 tháng 8 2018

Ta có

 \(C=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}...+\frac{1}{17.18}>A=\frac{1}{2.3}+\frac{1}{5.4}+...+\frac{1}{18.19}\)

\(C< =>\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{18-17}{17.18}\)\(>A\)

\(C< =>\frac{1}{2}-\frac{1}{18}\)\(>A\)

\(C< =>\frac{4}{9}\)\(>A\left(1\right)\)

Lại có  \(C=\frac{4}{9}< \frac{9}{19}=B\left(2\right)\)

Từ (1),(2) => B>A

30 tháng 3 2018

Đặt S=1/12+1/13+1/14+1/15+...+1/23

ta có 1/12+1/13+1/14+1/15+...+1/22+1/23 = (1/12+1/13+1/14+...+1/17)+(1/18+1/19+...+1/23)

đặt A=1/12+1/13+1/14+...+1/17

ta có

1/13<1/12

1/14<1/12

..........................

.........................

1/17<1/12

=>A<1/12+1/12+1/12+....+1/12 (có 6 phân số)

=>A<1x6/12

=>A<1/2 (1)

Đặt B=1/18+1/19+...+11/23

ta có

1/19<1/18

1/20<1/18

...........................

..........................

1/23<1/18

=> B<1/18+1/18+1/18+...+1/18 (có 6 phân số)

=>B<1x 6/18

=>B<1/3      (2)

từ 1 và 2 =>S=A+B<1/2+1/3

=>S<5/6 (dpcm)

k cho mình nhé

30 tháng 3 2018

Đặt S=1/12+1/13+1/14+1/15+...+1/23

ta có 1/12+1/13+1/14+1/15+...+1/22+1/23 = (1/12+1/13+1/14+...+1/17)+(1/18+1/19+...+1/23)

đặt A=1/12+1/13+1/14+...+1/17

ta có

1/13<1/12

1/14<1/12

..........................

.........................

1/17<1/12

=>A<1/12+1/12+1/12+....+1/12 (có 6 phân số)

=>A<1x6/12

=>A<1/2 (1)

Đặt B=1/18+1/19+...+11/23

ta có

1/19<1/18

1/20<1/18

...........................

..........................

1/23<1/18

=> B<1/18+1/18+1/18+...+1/18 (có 6 phân số)

=>B<1x 6/18

=>B<1/3      (2)

từ 1 và 2 =>S=A+B<1/2+1/3

=>S<5/6 (dpcm)

k cho mình nhé