3^2n và 2^3n [ n khác 0 ] - so sánh hộ mik
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\hept{\begin{cases}3^{2n}=9^n\\2^{3n}=8^n\end{cases}}\)
nếu n=0\(\Rightarrow\hept{\begin{cases}9^n=9^0=1\\8^n=8^0=1\end{cases}\Rightarrow9^n=8^n}\)
nếu n>0\(\Rightarrow9^n>8^n\)
vậy \(3^{2n}\ge2^{3n}\)

Ta có :32n =(32)n = 9n
23n =(23)n = 8n
Vì 9 > 8 =>9n > 8n =>32n > 23n
Vậy 32n >23n
Chúc bạn học tốt !!!!
32n và 22n
32n = 9n
22n = 8n
Vì 9n > 8n nên 32n >22n
*good luck*

a. \(\hept{\begin{cases}27^{11}=3^{3.11}=3^{33}\\81^8=3^{4.8}=3^{32}\end{cases}\Rightarrow27^{11}>81^8}\)
b.\(\hept{\begin{cases}625^5=5^{4.5}=5^{20}\\125^7=5^{3.7}=5^{21}\end{cases}\Rightarrow625^5< 125^7}\)
c.\(\hept{\begin{cases}5^{36}=125^{12}\\11^{24}=121^{12}\end{cases}\Rightarrow5^{36}>11^{24}}\)
d. \(\hept{\begin{cases}3^{2n}=9^n\\2^{3n}=8^n\end{cases}\Rightarrow3^{2n}>2^{3n}}\)
a) Ta có 2711 = (33)11 = 33.11 = 333
=> 818 = (34)8 = 34.8 = 332
Vì 333 > 332
=> 2711 > 818
b) Ta có : 6255 = (54)5 = 54.5 = 520
Lại có 1257 = (53)7 = 53.7 = 521
Vì 520 < 521
=> 6255 < 1257
c) Ta có 536 = 53.12 = (53)12 = 12512
Lại có 1124 = 112.12 = (112)12 = 12112
Vì 125 > 121 => 12512 > 12112 => 536 > 1124
d) Ta có 32n = (32)n = 9n
Lại có 23n = (23)n = 8n
Vì \(n\inℕ^∗\)=> 9n > 8n => 32n > 23n

3²ⁿ = (3²)ⁿ = 9ⁿ
2³ⁿ = (2³)ⁿ = 8ⁿ
Do 9 > 8 nên 9ⁿ > 8ⁿ
Vậy 3²ⁿ > 2³ⁿ
------------
5³⁶ = (5³)¹² = 125¹²
11²⁴ = (11²)¹² = 121¹²
Do 125 > 121 nên 125¹² > 121¹²
Vậy 5³⁶ > 11²⁴
`#3107.101107`
a)
\(3^{2n}\) và \(2^{3n}\)
Ta có:
\(3^{2n}=3^{2\cdot n}=\left(3^2\right)^n=9^n\\ 2^{3n}=2^{3\cdot n}=\left(2^3\right)^n=8^n\)
Vì \(9>8\Rightarrow9^n>8^n\Rightarrow3^{2n}>2^{3n}\)
Vậy, \(3^{2n}>2^{3n}\)
b)
\(5^{36}\) và \(11^{24}\)
Ta có:
\(5^{36}=5^{12\cdot3}=\left(5^3\right)^{12}=125^{12}\\ 11^{24}=11^{12\cdot2}=\left(11^2\right)^{12}=121^{12}\)
Vì \(125>121\Rightarrow125^{12}>121^{12}\Rightarrow5^{36}>11^{24}\)
Vậy, \(5^{36}>11^{24}.\)


UCLN =d
(2n+1) &(3n-1) chia het cho d
3(2n+1) chia het d
2(3n-1) chia het cho d
3(2n+1)-2(3n-1) chia het cho d
6n+3-6n+2 chia het cho d
5 chia het cho d
d lon nhat => d=5

\(3^{2n}\left(3^2\right)^n=9^n\)
\(2^{3n}=\left(2^3\right)^n=8^n\)
+) Với \(n\in N\) * thì \(9^n>8^n\Leftrightarrow3^{2n}>2^{3n}\)

3 mũ 2 lớn hơn
\(3^{2n}=\left(3^2\right)^{n}=9^{n}\)
\(2^{3n}=\left(2^3\right)^{n}=8^{n}\)
mà \(9^{n}>8^{n}\)
nên \(3^{2n}>2^{3n}\)