K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

S
9 tháng 7

\(\left(2a+b\right)^2-\left(b^2-2a\right)^2\)

\(=\left(2a+b-b^2+2a\right)\left(2a+b+b^2-2a\right)\)

\(=\left(-b^2+b+4a\right)\left(b^2+b\right)\)

\(=b\left(b+1\right)\left(-b^2+b+4a\right)\)

\(\left(2a+b\right)^2-\left(b^2-2a\right)^2\)

\(=\left(2a+b-b^2+2a\right)\left(2a+b+b^2-2a\right)\)

\(=\left(-b^2+b+4a\right)\left(b^2+b\right)\)

\(=b\left(b+1\right)\left(-b^2+b+4a\right)\)

Vậy \(M=b\left(b+1\right)\left(-b^2+b+4a\right)\)

a: \(=a^2-b^4\)

b: \(=\left(a^2+2a\right)^2-9\)

c: \(=a^2-\left(2a+3\right)^2\)

d: \(=a^4-\left(2a-3\right)^2\)

e: \(=\left(-a^2-2a+3\right)^2\)

g: \(=4a^2-a^4\)

1 tháng 8 2017

Đoạn đầu cái chỗ (a^2+2a+3).(...) là tách với cái kia chứ không phải 2 cái nhân với nhau đâu

NV
6 tháng 9 2020

\(\frac{\left(1-2a\right)\left(1-2b\right)}{\left(1-a\right)\left(1-b\right)}-\frac{4\left(1-a-b\right)^2}{\left(2-a-b\right)^2}=\frac{\left(1-2a\right)\left(1-2b\right)\left(2-a-b\right)^2-4\left(1-a\right)\left(1-b\right)\left(1-a-b\right)^2}{\left(1-a\right)\left(1-b\right)\left(2-a-b\right)^2}\)

\(=\frac{2a^3-2a^2b-3a^2-2ab^2+6ab+2b^3-3b^2}{\left(1-a\right)\left(1-b\right)\left(2-a-b\right)^2}\)

\(=\frac{\left(2a^3-4a^2b+2ab^2\right)+\left(2a^2b-4ab^2+2b^3\right)-3\left(a^2-2ab+3b^2\right)}{\left(1-a\right)\left(1-b\right)\left(2-a-b\right)^2}\)

\(=\frac{2a\left(a^2-2ab+b^2\right)+2b\left(a^2-2ab+b^2\right)-3\left(a^2-2ab+b^2\right)}{\left(1-a\right)\left(1-b\right)\left(2-a-b\right)^2}\)

\(=\frac{\left(a-b\right)^2\left(2a+2b-3\right)}{\left(1-a\right)\left(1-b\right)\left(2-a-b\right)^2}\)

9 tháng 8 2019

\(=\left(a+b-c\right)\left(a-b\right)^2\) nha ! 

P/S:Ko có mục đích xấu,đăng lên cho bạn thôi.

9 tháng 8 2019

Giỏi quá à :3

AH
Akai Haruma
Giáo viên
21 tháng 9 2018

Lời giải:

Đặt \(a+b+c=t\)

\(A=(2a+2b-c)^2+(2b+2c-a)^2+(2c+2a-b)^2\)

\(=(2a+2b+2c-3c)^2+(2b+2c+2a-3a)^2+(2c+2a+2b-3b)^2\)

\(=(2t-3c)^2+(2t-3a)^2+(2t-3b)^2\)

\(=4t^2+9c^2-12tc+4t^2+9a^2-12ta+4t^2+9b^2-12tb\)

\(=12t^2+9(a^2+b^2+c^2)-12t(a+b+c)\)

\(=12t^2+9m-12t^2=9m\)

21 tháng 9 2018

\(A=\left(2a+2b-c\right)^2+\left(2b+2c-a\right)^2+\left(2c+2a-b\right)^2\)

\(A=\left(2a+2b+2c-3c\right)^2+\left(2b+2c+2a-3a\right)^2+\left(2c+2a+2b-3b\right)^2\)

\(A=\left[2.\left(a+b+c\right)-3c\right]^2+\left[2.\left(a+b+c\right)-3a\right]^2+\left[2.\left(a+b+c\right)-3b\right]^2\)

Đặt \(a+b+c=n\)

\(\Rightarrow A=\left(2n-3c\right)^2+\left(2n-3a\right)^2+\left(2n-3b\right)\)

\(A=4n^2-12cn+9c^2+4n^2-12an+9a^2+4n^2-12bn+9b^2\)

\(A=12n.\left(n-a-b-c\right)+9.\left(a^2+b^2+c^2\right)\)

Ta có: \(a^2+b^2+c^2=m\)

\(\Rightarrow A=12.\left(a+b+c-a-b-c\right)+9m\)

\(A=9m\)

Vậy \(A=9m\)tại \(a^2+b^2+c^2=m\)

Tham khảo nhé~

NV
28 tháng 6 2021

Chuẩn hóa \(a+b+c=3\)

\(\dfrac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}=\dfrac{\left(a+3\right)^2}{2a^2+\left(3-a\right)^2}=\dfrac{a^2+6a+9}{3\left(a^2-2a+3\right)}=\dfrac{1}{3}\left(1+\dfrac{8a+6}{\left(a-1\right)^2+2}\right)\le\dfrac{1}{3}\left(1+\dfrac{8a+6}{2}\right)\)

Tương tự và cộng lại:

\(VT\le\dfrac{1}{3}\left(3+\dfrac{8\left(a+b+c\right)+18}{2}\right)=8\) (đpcm)

28 tháng 6 2021

Tuyệt :>

9 tháng 6 2020

Không mất tính tổng quát, chuẩn hóa a + b + c = 1

Khi đó, ta cần chứng minh: \(\frac{\left(a+1\right)^2}{2a^2+\left(1-a\right)^2}+\frac{\left(b+1\right)^2}{2b^2+\left(1-b\right)^2}+\frac{\left(c+1\right)^2}{2c^2+\left(1-c\right)^2}\le8\)

Xét bất đẳng thức phụ: \(\frac{\left(x+1\right)^2}{2x^2+\left(1-x\right)^2}\le4x+\frac{4}{3}\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{\left(3x-1\right)^2\left(4x+1\right)}{2x^2+\left(1-x\right)^2}\ge0\)*đúng*

Áp dụng, ta được: \(\frac{\left(a+1\right)^2}{2a^2+\left(1-a\right)^2}+\frac{\left(b+1\right)^2}{2b^2+\left(1-b\right)^2}+\frac{\left(c+1\right)^2}{2c^2+\left(1-c\right)^2}\)\(\le4\left(a+b+c\right)+4=4.1+4=8\)

Vậy bất đẳng thức được chứng minh

Đẳng thức xảy ra khi a = b = c

25 tháng 7 2019

Chuẩn hóa ta có : \(a+b+c=3\)

=> \(\frac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}=\frac{\left(a+3\right)^2}{2a^2+\left(3-a\right)^2}=\frac{a^2+6a+9}{3\left(a^2-2a+3\right)}\)

Xét\(\frac{a^2+6a+9}{3\left(a^2-2a+3\right)}\le\frac{4}{3}a+\frac{4}{3}\)

<=> \(a^2+6a+9\le4\left(a+1\right)\left(a^2-2a+3\right)\)

<=> \(4a^3-5a^2-2a+3\ge0\)

<=> \(\left(a-1\right)^2\left(4a+3\right)\ge0\)luôn đúng

Khi đó 

\(VT\le\frac{4}{3}\left(a+b+c\right)+4=\frac{4}{3}.3+4=8\)(ĐPCM)

Dấu bằng xảy ra khi a=b=c