tìm m nguyên để:
a) \(2x^3y^{m}=2x^3y^5\)
b)\(-4a^2b^{m}=-4a^2b^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(\frac{15ab+5b^2}{9a^2-b^2}=\frac{5b\left(3a+b\right)}{\left(3a\right)^2-b^2}=\frac{5b\left(3a+b\right)}{\left(3a-b\right)\left(3a+b\right)}=\frac{5b}{3a-b}\)
\(\frac{3x^2-3y^2}{9x+9y}=\frac{3\left(x^2-y^2\right)}{9\left(x+y\right)}=\frac{\left(x-y\right)\left(x+y\right)}{3\left(x+y\right)}=\frac{x-y}{3}\)
\(\frac{m^2-4m+4}{2x-4}=\frac{\left(x-2\right)^2}{2\left(x-2\right)}=\frac{x-2}{2}\)
(2x+1) . (3y -2)=-5
=> 2x+1 \(\in\)Ư(-5) = { 1; 5; -1; -5}
=> 2x \(\in\){ 0; 6; -2; -6}
=> x \(\in\){ 0; 3; -1; -3}
Sau bn tự thay nha
\(\left(2x+1\right)\left(3y-2\right)=5\)
Do x,y nguyên => 2x+1; 3y-2 nguyên
=> 2x+1; 3y-2\(\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
2x+1 | -5 | -1 | 1 | 5 |
3y-2 | -1 | -5 | 5 | 1 |
x | -3 | -1 | 0 | 2 |
y | \(\frac{1}{3}\) | -1 | \(\frac{7}{3}\) | 1 |
Vậy (x;y)=(-1;-1);(2;1)
Sửa đề c/m : \(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)
Ta có \(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\)
=> \(\frac{a+2b+c}{x}=\frac{2a+b-c}{y}=\frac{4a-4b+c}{z}\)
Từ (1) => \(\frac{a+2b+c}{x}=\frac{4a+2b-2c}{2y}=\frac{4a-4b+c}{z}=\frac{a+2b+c+4a+2b-2c+4a-4b+c}{x+2y+z}\)
\(=\frac{9a}{x+2y+z}\)(2)
Từ (1) => \(\frac{2a+4b+2c}{2x}=\frac{2a+b-c}{y}=\frac{4a-4b+c}{z}=\frac{2a+4b+2c+2a+b-c-4a+4b-c}{2x+y-z}\)
\(=\frac{9b}{2x+y-z}\)(3)
Từ (1) => \(\frac{4a+8b+4c}{4x}=\frac{8a+4b-4c}{4y}=\frac{4a-4b+c}{z}\)
\(=\frac{4a+8a+4c-8a-4b+4c+4a-4b+c}{4x-4y+z}=\frac{9c}{4x-4y+z}\)(4)
Từ (2)(3)(4) => \(\frac{9a}{x+2y+z}=\frac{9b}{2x+y-z}=\frac{9c}{4x-4y+z}\)
=> \(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)(đpcm)
\(a,\Leftrightarrow\left\{{}\begin{matrix}6x-9y=-15\\-6x+8y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3y=-5\\-y=-11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-5+33}{2}=14\\y=11\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}2x-3y=-5\\-3x+4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x-9y=-15\\-6x+8y=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-y=-11\\2x-3y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=11\\x=\dfrac{-5+3y}{2}=\dfrac{-5+3\cdot11}{2}=14\end{matrix}\right.\)
a) 2x=3y=4z⇒\(\dfrac{2}{\dfrac{1}{x}}=\dfrac{3}{\dfrac{1}{y}}=\dfrac{4}{\dfrac{1}{z}}=\dfrac{2+3+4}{\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}}=\dfrac{9}{3}=3\) ( Vì\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\))
⇒ x=\(\dfrac{3}{2}\) ; y=1; z=\(\dfrac{3}{4}\)
b) \(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-by}{c}\)
= \(\dfrac{abz-acy}{a^{2^{ }}}=\dfrac{bcx-abz}{b^{2^{ }}}=\dfrac{acy-bcy}{c^2}\) =\(\dfrac{\left(abz-acy\right)+\left(bcx-abz\right)+\left(acy-bcy\right)}{a^2+b^2+c^{2^{ }}}=\dfrac{0}{a^2+b^2+c^{2^{ }}}=0\)
⇒\(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-by}{c}=0\)
⇒ ✽bz-cy=0⇒bz=cy⇒\(\dfrac{b}{y}=\dfrac{c}{z}\) (1)
✽ cx-az=0⇒cx=az⇒ \(\dfrac{a}{x}=\dfrac{c}{z}\) (2)
Từ (1) và (2) suy ra\(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
Mình cảm ơn ạn nhiều nhiều nha, thanks bạn nhìu lắm luôn, bạn có thể vào ib với mình k ạ
5.
\(4x^5y^2+8x^4y^3+4x^3y^4=4x^3y^2(x^2+2xy+y^2)\)
\(=4x^3y^2(x+y)^2\)
9.
\(4x^5y^2+16x^4y^2-6x^3y^2=2x^3y^2(2x^2+4x-3)\)
13.
\(-3x^4y+6x^3y-3x^2y=-3x^2y(x^2-2x+1)=-3x^2y(x-1)^2\)
17.
\(8x^3-8x^2y+2xy^2=2x(4x^2-4xy+y^2)\)
\(=2x[(2x)^2-2.2x.y+y^2]=2x(2x-y)^2\)
21.
\((a^2+4)^2-16a^2b^2=(a^2+4)^2-(4ab)^2\)
\(=(a^2+4-4ab)(a^2+4+4ab)\)
25.
\(100a^2-(a^2+25)^2=(10a)^2-(a^2+25)^2\)
\(=(10a-a^2-25)(10a+a^2+25)\)
\(=-(a^2-10a+25)(a^2+10a+25)=-(a-5)^2(a+5)^2\)
29.
\(25a^2b^2-4x^2+4x-1=25a^2b^2-(4x^2-4x+1)\)
\(=(5ab)^2-(2x-1)^2=(5ab-2x+1)(5ab+2x-1)\)
a: \(x^2+6xy+9y^2=\left(x+3y\right)^2\)
b: \(4a^4-4a^2b^2+b^4=\left(2a^2-b^2\right)^2\)
\(x^6-2x^3y+y^2=\left(x^3-y\right)^2\)
b: \(\left(x+y\right)^3-\left(x-y\right)^3\)
\(=\left(x+y-x+y\right)\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)
\(=2y\left(3x^2+y^2\right)\)
\(25x^4-10x^2y^2+y^4=\left(5x^2-y^2\right)^2\)
\(-a^2-2a-1=-\left(a+1\right)^2\)
Vậy, \(m = 5\).
b) Để \(- 4 a^{2} b^{m} = - 4 a^{2} b^{2}\), ta cần số \(b\) của cả hai vế phải bằng nhau.Vậy, \(m = 2\).
a: \(2x^3y^{m}=2x^3y^5\)
=>\(y^{m}=y^5\)
=>m=5
b: \(-4a^2b^{m}=-4a^2b^2\)
=>\(b^{m}=b^2\)
=>m=2