K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(-\frac{9}{10}\cdot\frac{5}{14}+\frac12\cdot\left(-\frac{9}{10}\right)+\frac17\cdot\frac{-1}{10}\)

\(=-\frac{9}{10}\left(\frac{5}{14}+\frac12\right)+\frac{-1}{7}\cdot\frac{1}{10}\)

\(=-\frac{9}{10}\left(\frac{5}{14}+\frac{7}{14}\right)-\frac{1}{70}\)

\(=-\frac{9}{10}\cdot\frac{12}{14}-\frac{1}{70}=\frac{-9}{10}\cdot\frac67-\frac{1}{70}=\frac{-54-1}{70}=-\frac{55}{70}=-\frac{11}{14}\)

\(-\frac{9}{10}\times\frac{5}{14}+\frac12\times\left(-\frac{9}{10}\right)+\frac17\times\left(-\frac{1}{10}\right)\)

\(=-\frac{9}{10}\times\left(\frac{5}{14}+\frac12\right)+\frac17\times\left(-\frac{1}{10}\right)\)

=\(-\frac{9}{10}\times\frac67+\frac17\times\left(-\frac{1}{10}\right)\)

\(=-\frac{27}{35}+\left(-\frac{1}{70}\right)\)

\(=-\frac{11}{14}\)

9 tháng 5 2016

A=\(\frac{1}{30}\)+\(\frac{1}{42}\)+\(\frac{1}{56}\)+\(\frac{1}{72}\)+\(\frac{1}{90}\)+\(\frac{1}{110}\)+\(\frac{1}{132}\)

A=\(\frac{1}{5.6}\)+\(\frac{1}{6.7}\)+\(\frac{1}{7.8}\)+\(\frac{1}{8.9}\)+\(\frac{1}{9.10}\)+\(\frac{1}{10.11}\)+\(\frac{1}{11.12}\)

A= \(\frac{1}{5}\)-\(\frac{1}{6}\)+\(\frac{1}{6}\)-\(\frac{1}{7}\)+\(\frac{1}{7}\)-\(\frac{1}{8}\)+\(\frac{1}{8}\)-\(\frac{1}{9}\)+\(\frac{1}{9}\)-\(\frac{1}{10}\)+\(\frac{1}{10}\)-\(\frac{1}{11}\)+\(\frac{1}{11}\)-\(\frac{1}{12}\)

A= \(\frac{1}{5}\)-\(\frac{1}{12}\)=\(\frac{7}{60}\)

12 tháng 2 2023

`#` `\text{dkhanhqlv}`

`4)`

`a)3.(-5/11)`

`=-15/11`

`b)3/5+4/7 . 14/6`

`=3/5 + 4/3`

`=9/15+20/15`

`=29/15`

`c) 10/21-3/8 . 4/15`

`=10/21-1/10`

`=100/210-21/210`

`=79/100`

`d)(2/3+3/4)(5/7+5/14)`

`=(8/12+9/12)(10/14+5/14)`

`=17/12 . 15/14`

`=85/56`

`5)`

`a)x-1/2=3/10 . 5/6`

`=>x-1/2=1/4`

`=>x=1/4+1/2`

`=>x=1/4+2/4`

`=>x=3/4`

`b)x/5 = -3/14`

`=>x : 5 = -3/14`

`=>x=-3/14 . 5`

`=>x=-15/14`

`c)x+2/3=9/15 . 5/27`

`=>x+2/3=1/9`

`=>x=1/9-2/3`

`=>x=1/9-6/9`

`=>x=-5/9`

9 tháng 5 2016

 

Gọi tử số của B là a và mẫu là b

\(a=1+2+2^2+2^3+...+2^{2008}\)

\(2a=2+2^2+2^3+...+2^{2009}\)

\(2a-a=\left(2+2^2+2^3+...+2^{2009}\right)-\left(1+2+2^2+2^3+...+2^{2008}\right)\)

\(a=2^{2009}-1\)

\(a=\frac{2^{2009}-1}{1-2^{2009}}\)

\(a=1\)

$2a-a=\left(2+2^2+2^3+...+2^{2009}\right)-\left(1+2+2^2+...+2^{2008}\right)$2aa=(2+22+23+...+22009)(1+2+22+...+22008)

$a=\left(2-2\right)+\left(2^2-2^2\right)+...+\left(2^{2008}-2^{2008}\right)+2^{2009}-1$a=(22)+(2222)+...+(2200822008)+220091

$a=0+0+0+2^{2009}-1$a=0+0+0+220091

$a=2^{2009}-1$a=220091

$B=\frac{2^{2009}-1}{1-2^{2009}}$B=220091122009 

B= -1

27 tháng 4 2018

-9/10x(5/14+1/7)+1/10x-9/2

=-9/10x7/14+1/10x-9/2

-9/10x1/2+1/10x-9/2

=-9/20+--9/20

=-18/20=-9/10

30 tháng 7 2019

\(B=\frac{-9}{10}.\frac{5}{14}+\frac{1}{10}.\frac{-9}{2}+\frac{1}{7}.\frac{-9}{10}\)
\(B=\frac{-9}{2}.\frac{1}{14}+\frac{-9}{20}+\frac{-9}{70}\)
\(B=\frac{-9}{28}+\frac{-9}{20}+\frac{-9}{70}\)
\(B=\frac{-27}{35}+\frac{-9}{70}\)
\(B=-\frac{9}{10}\)

29 tháng 4 2019

\(D=\frac{-9}{10}.\frac{5}{14}+\frac{1}{10}.\left(\frac{-9}{2}\right)+\frac{1}{7}.\frac{-9}{10}\)

\(D=\frac{-9}{28}+\frac{-9}{20}+\frac{-9}{70}\)

\(D=\frac{-9}{10}\)

29 tháng 4 2019

https://olm.vn/hoi-dap/detail/80925855264.html

a) Ta có: \(\dfrac{-5}{7}\left(\dfrac{14}{5}-\dfrac{7}{10}\right):\left|-\dfrac{2}{3}\right|-\dfrac{3}{4}\left(\dfrac{8}{9}+\dfrac{16}{3}\right)+\dfrac{10}{3}\left(\dfrac{1}{3}+\dfrac{1}{5}\right)\)

\(=\dfrac{-5}{7}\cdot\dfrac{3}{2}\cdot\dfrac{21}{10}-\dfrac{3}{4}\cdot\dfrac{56}{3}+\dfrac{10}{3}\cdot\dfrac{8}{15}\)

\(=\dfrac{-9}{4}-14+\dfrac{16}{9}\)

\(=\dfrac{-1621}{126}\)

b) Ta có: \(\dfrac{17}{-26}\cdot\left(\dfrac{1}{6}-\dfrac{5}{3}\right):\dfrac{17}{13}-\dfrac{20}{3}\left(\dfrac{2}{5}-\dfrac{1}{4}\right)+\dfrac{2}{3}\left(\dfrac{6}{5}-\dfrac{9}{2}\right)\)

\(=\dfrac{-17}{26}\cdot\dfrac{13}{17}\cdot\dfrac{-3}{2}-\dfrac{20}{3}\cdot\dfrac{3}{20}+\dfrac{2}{3}\cdot\dfrac{-33}{10}\)

\(=\dfrac{3}{4}-1-\dfrac{11}{5}\)

\(=-\dfrac{49}{20}\)

2 tháng 4 2017

\(\frac{-9}{10}.\frac{5}{14}+\frac{1}{10}.\frac{-9}{2}+\frac{1}{7}.\frac{-9}{10}\)

\(=\frac{-9}{10}.\frac{5}{14}+\frac{-9}{10}.\frac{1}{2}+\frac{1}{7}.\frac{-9}{10}\)

\(=\frac{-9}{10}.\left(\frac{5}{14}+\frac{1}{2}+\frac{1}{7}\right)=\frac{-9}{10}.1=\frac{-9}{10}\)

20 tháng 5 2018

a) Đặt \(A=\frac{7^{15}}{1+7+7^2+...+7^{14}}\)

Đặt \(B=1+7+7^2+...+7^{14}\)

\(\Rightarrow7B=7+7^2+...+7^{15}\)

\(\Rightarrow7B-B=6B=7^{15}-1\)

\(\Rightarrow B=\frac{7^{15}-1}{6}\)

\(\Rightarrow A=\frac{7^{15}-1+1}{\frac{7^{15}-1}{6}}=\left(7^{15}-1\right).\frac{6}{7^{15}-1}+\frac{6}{7^{15}-1}=6+\frac{6}{7^{15}-1}\)

Tự làm tiếp nha

21 tháng 5 2018

bạn giải nốt đi

12 tháng 6 2018

b, Ta có:\(\dfrac{1+3+3^2+.....+3^{10}}{1+3+3^2+.....+3^9}\) \(=\dfrac{1}{1+3+3^2+...+3^9}+\dfrac{3+3^2+...+3^{10}}{1+3+3^2+...+3^9}\)\(=\dfrac{1}{1+3+3^2+...+3^9}+\dfrac{3.\left(1+3+3^2+...+3^9\right)}{1+3+3^2+...+3^9}\)

\(=\dfrac{1}{1+3+3^2+...+3^9}+3< 4\)

\(\Rightarrow\) \(\dfrac{1+3+3^2+...+3^{10}}{1+3+3^2+...+3^9}< 4\) \(\left(1\right)\)

Ta có :\(\dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}\)

\(=\dfrac{1}{1+5+5^2+...+5^9}+\dfrac{5+5^2+...+5^{10}}{1+5+5^2+....+5^9}\)

\(=\dfrac{1}{1+5+5^2+...+5^9}+\dfrac{5.\left(1+5+5^2+...+5^9\right)}{1+5+5^2+...+5^9}\)

\(=\dfrac{1}{1+5+5^2+...+5^9}+5>5\)

\(\Rightarrow\) \(\dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}>5\) \(\left(2\right)\)

Từ \(\left(1\right)và\left(2\right)\)

\(\Rightarrow\dfrac{1+3+3^2+...+3^{10}}{1+3+3^2+...+3^9}< \dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}\)

Vậy \(\dfrac{1+3+3^2+...+3^{10}}{1+3+3^2+...+3^9}< \dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}\)

12 tháng 6 2018

a, Đặt \(A\)\(=\dfrac{7^{15}}{1+7+7^2+...+7^{14}}\)

\(\Rightarrow\) \(\dfrac{1}{A}\) \(=\dfrac{1+7+7^2+...+7^{14}}{7^{15}}=\dfrac{1}{7^{15}}+\dfrac{7}{7^{15}}+\dfrac{7^2}{7^{15}}+...+\dfrac{7^{14}}{7^{15}}\)

\(=\dfrac{1}{7^{15}}+\dfrac{1}{7^{14}}+\dfrac{1}{7^{13}}+....+\dfrac{1}{7}\)

Đặt \(B=\dfrac{9^{15}}{1+9+9^2+...+9^{14}}\)

\(\Rightarrow\dfrac{1}{B}=\dfrac{1+9+9^2+...+9^{14}}{9^{15}}=\dfrac{1}{9^{15}}+\dfrac{9}{9^{15}}+\dfrac{9^2}{9^{15}}+...+\dfrac{9^{14}}{9^{15}}\)

\(=\dfrac{1}{9^{15}}+\dfrac{1}{9^{14}}+\dfrac{1}{9^{13}}+...+\dfrac{1}{9}\)

\(\dfrac{1}{7^{15}}>\dfrac{1}{9^{15}};\dfrac{1}{7^{14}}>\dfrac{1}{9^{14}};\dfrac{1}{7^{13}}>\dfrac{1}{9^{13}};....;\dfrac{1}{7}>\dfrac{1}{9}\)

\(\Rightarrow\dfrac{1}{A}>\dfrac{1}{B}\) \(\Rightarrow A< B\)

Vậy\(\dfrac{7^{15}}{1+7+7^2+...+7^{14}}>\dfrac{9^{15}}{1+9+9^2+....+9^{14}}\)