1. X\(-\)\(3\frac{1}{2}=\frac{3}{5}\)
2. 3,15 : 0,4 = 2,1x : 1,68
Giúp e với nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình như trong bài tìm x dấu phải là dấu => chứ nhỉ.
Bài 1: Tìm x
a) Ta có: \(-\frac{3}{4}-\left(x+\frac{1}{2}\right)=1\frac{2}{3}\)
\(\Leftrightarrow\frac{-3}{4}-x-\frac{1}{2}=\frac{5}{3}\)
\(\Leftrightarrow-x-\frac{5}{4}=\frac{5}{3}\)
\(\Leftrightarrow-x=\frac{5}{3}+\frac{5}{4}=\frac{35}{12}\)
hay \(x=-\frac{35}{12}\)
Vậy: \(x=-\frac{35}{12}\)
b) Ta có: \(3.15:0.4=2.1x:1.68\)
\(\Leftrightarrow\frac{63}{20}:\frac{2}{5}=\frac{21}{10}x:\frac{168}{100}\)
\(\Leftrightarrow x\cdot\frac{21}{10}:\frac{168}{100}=\frac{63}{8}\)
\(\Leftrightarrow x\cdot\frac{21}{10}=\frac{63}{8}\cdot\frac{168}{100}=\frac{1323}{100}\)
\(\Leftrightarrow x=\frac{1323}{100}:\frac{21}{10}=\frac{63}{10}\)
Vậy: \(x=\frac{63}{10}\)
a) \(-\frac{3}{4}-\left(x+\frac{1}{2}\right)=1\frac{2}{3}=\frac{5}{3}\Leftrightarrow-\left(x+\frac{1}{2}\right)=\frac{5}{3}+\frac{3}{4}=\frac{29}{12}\)
\(\Leftrightarrow x+\frac{1}{2}=-\frac{29}{12}\Leftrightarrow x=-\frac{29}{12}-\frac{1}{2}=-\frac{29}{12}-\frac{6}{12}=-\frac{35}{12}\)
b) \(3,15:0,4=2,1x:1,68\Leftrightarrow7,875=2,1x\div1,68\Leftrightarrow2,1x=7,875\times1,68=13,23\)
\(\Leftrightarrow x=13,23\div2,1\Leftrightarrow x=6,3\)
\(\left(2,1x+\frac{5}{3}\right)^6=\left(-3,2x+\frac{1}{2}\right)^6\Rightarrow2,1x+\frac{5}{3}=-3,2x+\frac{1}{2}\)
\(\Rightarrow2,1x+3,2x=\frac{1}{2}-\frac{5}{3}\)
\(5,3x=\frac{-7}{6}\)
\(x=\frac{-7}{6}:\frac{53}{10}=\frac{-35}{159}\)
Vậy \(x=\frac{-35}{159}\)
a: \(\left\{{}\begin{matrix}\sqrt{5}x-y=\sqrt{5}\left(\sqrt{3}-1\right)\\2\sqrt{3}x+3\sqrt{5}y=21\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2\sqrt{15}x-2\sqrt{3}\cdot y=2\sqrt{15}\left(\sqrt{3}-1\right)\\2\sqrt{15}x+15y=21\sqrt{5}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2\sqrt{3}y-15y=2\sqrt{45}-2\sqrt{15}-21\sqrt{5}\\2\sqrt{3}x+3\sqrt{5}y=21\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y\left(-2\sqrt{3}-15\right)=-15\sqrt{5}-2\sqrt{15}\\2\sqrt{3}\cdot x+3\sqrt{5}\cdot y=21\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{15\sqrt{5}+2\sqrt{15}}{2\sqrt{3}+15}=\sqrt{5}\\2\sqrt{3}x+3\sqrt{5}\cdot y=21\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\sqrt{5}\\2\sqrt{3}x=21-3\sqrt{5}\cdot\sqrt{5}=21-15=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\sqrt{5}\\x=\dfrac{6}{2\sqrt{3}}=\sqrt{3}\end{matrix}\right.\)
b: \(\left\{{}\begin{matrix}1,7x-2y=3,8\\2,1x+5y=0,4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}8,5x-10y=19\\4,2x+10y=0,8\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}8,5x-10y+4,2x+10y=19,8\\2,1x+5y=0,4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}12,7x=19,8\\2,1x+5y=0,4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{198}{127}\\5y=0,4-2,1x=-\dfrac{365}{127}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{198}{127}\\y=-\dfrac{73}{127}\end{matrix}\right.\)
a ) Ta có : \(\left|x\right|=2\frac{1}{3}\)
Đổi : \(2\frac{1}{3}=\frac{7}{3}\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{7}{3}\\x=-\frac{7}{3}\end{array}\right.\)
Kết luận : \(x\in\left\{\frac{7}{3};-\frac{7}{3}\right\}\)
b ) \(\left|x\right|=-3\)
Vì : \(x< 0\)
\(\Rightarrow x\) không thõa mãn
Kết luận : \(x\in\left\{\varnothing\right\}\)
c ) \(\left|x\right|=-3,15\)
Vì : \(x< 0\)
\(\Rightarrow x\) không thõa mãn
Kết luận : \(x\in\left\{\varnothing\right\}\)
d ) \(\left|x-1,7\right|=2,3\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1,7=2,3\\x-1,7=-2,3\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\\x=-0,6\end{array}\right.\)( thõa mãn )
Kết luận : \(x\in\left\{4;-0,6\right\}\)
e ) \(\left|x+\frac{3}{4}\right|-\frac{1}{2}=0\)
\(\left|x+\frac{3}{4}\right|=\frac{1}{2}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+\frac{3}{4}=\frac{1}{2}\\x+\frac{3}{4}=-\frac{1}{2}\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{4}\\x=-\frac{5}{4}\end{array}\right.\)
Kết luận \(x\in\left\{-\frac{1}{4};-\frac{5}{4}\right\}\)
\(a,\left|x\right|=2\frac{1}{3}\Rightarrow\left|x\right|=\frac{7}{3}\)
\(\Rightarrow\) \(\begin{cases}x=\frac{7}{3}\\x=\frac{-7}{3}\end{cases}\)
\(b,\left|x\right|=-3\) ( Vì |x| < 0 ) \(\Rightarrow x\in\varnothing\)
\(c,\left|x\right|=-3,15\) (Vì \(\left|x\right|< 0\) ) \(\Rightarrow x\in\varnothing\)
\(d,\left|x-1,7\right|=2,3\)
\(\Rightarrow\) \(\begin{cases}x-1,7=2,3\\x-1,7=-2,3\end{cases}\) \(\Rightarrow\) \(\begin{cases}x=2,3+1,7\\x=-2.3+1,7\end{cases}\) \(\Rightarrow\) \(\begin{cases}x=4\\x=-0,6\end{cases}\)
\(e,\left|x+\frac{3}{4}\right|-\frac{1}{2}=0\)
\(\Rightarrow\left|x+\frac{3}{4}\right|=\frac{1}{2}\) \(\Rightarrow\) \(\begin{cases}x+\frac{3}{4}=\frac{1}{2}\\x+\frac{3}{4}=-\frac{1}{2}\end{cases}\) \(\Rightarrow\) \(\begin{cases}x=\frac{1}{2}-\frac{3}{4}=-\frac{1}{4}\\x=-\frac{1}{2}-\frac{3}{4}=-\frac{5}{4}\end{cases}\)
a) \(1\frac{2}{7} = 1 + \frac{2}{7} = \frac{9}{2}\)
\(\begin{array}{l}x:1\frac{2}{7} = - 3,5\\x:\frac{9}{7} = - \frac{7}{2}\\x = - \frac{7}{2}.\frac{9}{7}\\x = - \frac{9}{2}\end{array}\)
b) \(0,4.x - \frac{1}{5}.x = \frac{3}{4}\)
\(\begin{array}{l}\frac{2}{5}.x - \frac{1}{5}.x = \frac{3}{4}\\\left( {\frac{2}{5} - \frac{1}{5}} \right).x = \frac{3}{4}\\\frac{1}{5}.x = \frac{3}{4}\\x = \frac{3}{4}:\frac{1}{5}\\x = \frac{3}{4}.5\\x = \frac{{15}}{4}\end{array}\)
\(x-3\frac{1}{2}=\frac{3}{5}\)
\(x=\frac{3}{5}+3\frac{1}{2}\)
\(x=4\frac{1}{10}\)
Vậy x = \(4\frac{1}{10}\)
Nhớ k cho mình nhé! Thank you!!!
\(3,15\div0,4=2,1.x\div1,68\)
\(7,875=2,1.x\div1,68\)
\(2,1.x=7,875\times1,68\)
\(2,1.x=13,23\)
\(x=13,23\div2,1\)
\(x=6,3\)
Vậy x = 6,3
Nhớ k cho mình nhé! Thank you!!!