Tìm số tự nhiên nhỏ nhất biết khi chia cho 4,6.7 được các số dư lần lượt là 2,4,5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(BCNN\left(5;7;8\right)=280\)
Sô tự nhiên nhỏ nhất khi chia cho 5;7;8 dư 2 là \(280+2=282\)
Sô tự nhiên nhỏ nhất khi chia cho 5;7;8 dư 4 là \(280+4=284\)
Sô tự nhiên nhỏ nhất khi chia cho 5;7;8 dư 5 là \(280+5=285\)
Vậy các số cần tìm là \(\left\{{}\begin{matrix}282\\284\\285\end{matrix}\right.\)
Ta có BCNN( 5, 7 ,8 ) = \(5.7.8=280.\)
Mà số này là số tự nhiên nhỏ nhất có thể chia 5, 7, 8 dư lần lượt là 2, 4 , 5,
Ta xét:
\(280-1=279\) ( ko nhận )
\(280-2=278\) ( ko nhận )
\(280-3=277\) ( nhận )
Vậy số đó là 277.
Lời gải:
Theo đề ra ta có:
$x-1\vdots 4; x-2\vdots 5; x-3\vdots 6$
$\Rightarrow x-1+4\vdots 4; x-2+5\vdots 5; x-3+6\vdots 6$
$\Rightarrow x+3\vdots 4, 5, 6$
$\Rightarrow x+3=BC(4,5,6)$
Để $x$ nhỏ nhất thì $x+3$ cũng phải nhỏ nhất.
$\Rightarrow x+3=BCNN(4,5,6)$
$\Rightarrow x+3=60$
$\Rightarrow x=57$
Gọi số cần tìm là x
Theo bài ra, ta có:
\(x=5k+3\Rightarrow2x-1=10k+5⋮5\)
\(x=7t+4\Rightarrow2x-1=14t+7⋮7\)
\(x=11m+6\Rightarrow2x-1=22m+11⋮11\)
\(\Rightarrow2x-1\in B\left(5;7;11\right)\)mà 2x - 1 nhỏ nhất nên \(2x-1=BCNN\left(5;7;11\right)\)
Ta có: \(BCNN\left(5;7;11\right)=5.7.11=385\)
\(\Rightarrow2x-1=385\Rightarrow x=193\)
Vậy x = 193
Chúc bạn học tốt.
Gọi a là số tự nhiên cần tìm (99 < a < 1000)
Ta có a chia 25 dư 5 => a + 20 chia hết cho 25
a chia 28 dư 8 => a + 20 chia hết cho 28
a chia 35 dư 15 => a + 20 chia hết cho 35
=> a + 20 thuộc BC(25;28;35) = B(700) = {0;700;1400;...}
Mà 119 < (a + 20) < 1020
Nên a + 20 = 700
=> a = 680
tick nhe
Như thế này: Vì A chia 5 dư 3 nên A có tận cùng là 3 hoặc 8. A chia cho 11 dư 6 nên A + 5 chia hết cho 11. mà A có tận cùng là 3 hoặc 8 nên A + 5 cũng có tận cùng là 3 hoặc 8. Nếu A+5 là số có hai chữ số mà chia hết cho 11 suy ra A +5 bằng 33 hoặc 88 - loại. Vậy A+5 có 3 chữ số có tận cùng là 3 hoặc 8; nếu chữ số hàng trăm là 1 suy ra A+5 là 143 hoặc 198 (vì A+5 chia hết cho 11) thử lại ta thấy 198 thỏa mãn nên A là 193
Như thế này: Vì A chia 5 dư 3 nên A có tận cùng là 3 hoặc 8.
A chia cho 11 dư 6 nên A + 5 chia hết cho 11.
mà A có tận cùng là 3 hoặc 8 nên A + 5 cũng có tận cùng là 3 hoặc 8.
Nếu A+5 là số có hai chữ số mà chia hết cho 11 suy ra A +5 bằng 33 hoặc 88 - loại.
Vậy A+5 có 3 chữ số có tận cùng là 3 hoặc 8; nếu chữ số hàng trăm là 1 suy ra A+5 là 143 hoặc 198 (vì A+5 chia hết cho 11) thử lại ta thấy 198 thỏa mãn nên A là 193
Gọi STN nhỏ nhất = a . Ta có
(a+2) chia hết cho 4
(a+2) chia hết cho 6
(a+2) chia hết cho 7
\(\Rightarrow\)(a+2) là BCNN(4;6;7)
BCNN(4;6;7)=168. Vậy (a+2)=168
Vậy a = 168 - 2 = 166
Kết quả là 82 nha !