Giúp em câu này được không các anh? nếu được thì em cảm ơn các anh rất nhiều ạ
1^2+2^2+3^2+4^2+5^2+...+n^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(S=\dfrac{1}{1x2}+\dfrac{1}{2x3}+\dfrac{1}{3x4}+\dfrac{1}{4x5}+...\dfrac{1}{nx\left(n+1\right)}\)
\(S=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...\dfrac{1}{n}-\dfrac{1}{n+1}\)
\(S=1-\dfrac{1}{n+1}=\dfrac{n}{n+1}\)
\(T=\dfrac{3}{1x2}+\dfrac{3}{2x3}+\dfrac{3}{3x4}+\dfrac{3}{4x5}+...\dfrac{3}{nx\left(n+1\right)}\)
\(T=3x\left[\dfrac{1}{1x2}+\dfrac{1}{2x3}+\dfrac{1}{3x4}+\dfrac{1}{4x5}+...\dfrac{1}{nx\left(n+1\right)}\right]\)
\(T=3x\left[1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...\dfrac{1}{n}-\dfrac{1}{n+1}\right]\)
\(T=3x\left(1-\dfrac{1}{n+1}\right)=\dfrac{3xn}{n+1}\)

a) \(\lim \frac{{2{n^2} + 6n + 1}}{{8{n^2} + 5}} = \lim \frac{{{n^2}\left( {2 + \frac{6}{n} + \frac{1}{{{n^2}}}} \right)}}{{{n^2}\left( {8 + \frac{5}{{{n^2}}}} \right)}} = \lim \frac{{2 + \frac{6}{n} + \frac{1}{n}}}{{8 + \frac{5}{n}}} = \frac{2}{8} = \frac{1}{4}\)
b) \(\lim \frac{{4{n^2} - 3n + 1}}{{ - 3{n^3} + 6{n^2} - 2}} = \lim \frac{{{n^3}\left( {\frac{4}{n} - \frac{3}{{{n^2}}} + \frac{1}{{{n^3}}}} \right)}}{{{n^3}\left( { - 3 + \frac{6}{n} - \frac{2}{{{n^3}}}} \right)}} = \lim \frac{{\frac{4}{n} - \frac{3}{{{n^2}}} + \frac{1}{{{n^3}}}}}{{ - 3 + \frac{6}{n} - \frac{2}{{{n^3}}}}} = \frac{{0 - 0 + 0}}{{ - 3 + 0 - 0}} = 0\).
c) \(\lim \frac{{\sqrt {4{n^2} - n + 3} }}{{8n - 5}} = \lim \frac{{n\sqrt {4 - \frac{1}{n} + \frac{3}{{{n^2}}}} }}{{n\left( {8 - \frac{5}{n}} \right)}} = \frac{{\sqrt {4 - 0 + 0} }}{{8 - 0}} = \frac{2}{8} = \frac{1}{4}\).
d) \(\lim \left( {4 - \frac{{{2^{{\rm{n}} + 1}}}}{{{3^{\rm{n}}}}}} \right) = \lim \left( {4 - 2 \cdot {{\left( {\frac{2}{3}} \right)}^{\rm{n}}}} \right) = 4 - 2.0 = 4\).
e) \(\lim \frac{{{{4.5}^{\rm{n}}} + {2^{{\rm{n}} + 2}}}}{{{{6.5}^{\rm{n}}}}} = \lim \frac{{{{4.5}^{\rm{n}}} + {2^2}{{.2}^{\rm{n}}}}}{{{{6.5}^{\rm{n}}}}} = \lim \frac{{{5^n}.\left[ {4 + 4.{{\left( {\frac{2}{5}} \right)}^{\rm{n}}}} \right]}}{{{{6.5}^n}}} = \lim \frac{{4 + 4.{{\left( {\frac{2}{5}} \right)}^{\rm{n}}}}}{6} = \frac{{4 + 4.0}}{6} = \frac{2}{3}\).
g) \(\lim \frac{{2 + \frac{4}{{{n^3}}}}}{{{6^{\rm{n}}}}} = \lim \left( {2 + \frac{4}{{{{\rm{n}}^3}}}} \right).\lim {\left( {\frac{1}{6}} \right)^{\rm{n}}} = \left( {2 + 0} \right).0 = 0\).

a) 3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3
=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)]
=n.(n+1).(n+2)
=>S=[n.(n+1).(n+2)] /3
b)
Nhân 4 vào hai vế ta được:
4A = 4.[1.2.3 + 2.3.4 + 3.4.5 + … + (n – 1).n.(n + 1)]
4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + … + (n – 1).n.(n + 1).4
4A = 1.2.3.4 + 2.3.4.(5 – 1) + 3.4.5.(6 – 2) + … + (n – 1).n.(n + 1).[(n + 2) – (n – 2)]
4A = 1.2.3.4 + 2.3.4.5 – 1.2.3.4 + 3.4.5.6 – 2.3.4.5 + … + (n – 1).n(n + 1).(n + 2) – (n – 2).(n – 1).n.(n + 1)
4A = (n – 1).n(n + 1).(n + 2)
A = (n – 1).n(n + 1).(n + 2) : 4.
3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3
=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)]
=n.(n+1).(n+2)
=>S=[n.(n+1).(n+2)] /3

uses crt;
var s:real;
i,n:integer;
begin
clrscr;
readln(n);
s:=0;
for i:=1 to n do
s:=s+(n*(n+1))/((n+2)*(n+3));
writeln(s:4:2);
readln;
end.


Ta có:
A=2+2^2+2^3+2^4+.....+2^100
=> 2A=2^2+2^3+...+2^101
=> 2A-A=A=(2^2+2^3+...+2^101)-(2+2^2+2^3+2^4.....+2^100)
=> A=2^2+2^3+...+2^101-2-2^2-...-2^100
=> A=2^101-2
B=1+3+3^2+3^2+....+3^2009
=> 3B=3+3^2+3^2+....+3^2010
=> 3B-B=2B=3+3^2+3^2....+3^2010-1-3-3^2-3^2-....-3^2009
=> 2B=3^2010-1
=> B=(3^2010-1)/2
C=1+5+5^2+5^3+...+5^1998
=> 5C=5+5^2+5^3+...+5^1999
=> 5C-C=4C=5+5^2+5^3+...+5^1999-1-5-5^2-5^3-...-5^1998
=> 4C=5^1999-1
=> C=(5^1999-1)/4
D=4+4^2+4^3+...+4^n
=> 4D=4^2+4^3+...+4^n+1
=> 4D-D=3D=4^2+4^3+...+4^n+1 - 4-4^2-4^3-...-4^n
=> 3D=4^n+1 - 4
=> 3D=\(\frac{4^{n+1}-4}{3}\)
Ta có : \(A=2+2^2+2^3+.....+2^{100}\)
\(2A=2+2^2+2^3+.....+2^{101}\)
\(2A-A=2^{101}-2\)
\(A=2^{101}-2\)
A = 1\(^2\) + \(2^2\) + ...+ n\(^2\)
A = 1 + 2.(1+ 1) + ...+ n[(n - 1) + 1]
A = 1 + 2.1 + 2 + ...+ n(n-1) + n
A = (1 + 2 + ..+n) + [1.2 + 2.3 + 3.4 +...+(n-1)n]
Đặt B = 1 + 2+ .. +n
C = 1.2 + 2.3 +..+ (n -1)n
B = 1 + 2+ ...+ n
B =(n + 1).n : 2
1.2.3 = 1.2.3
2.3.3 = 2.3.(4-1) = 2.3.4 - 1.2.3
3.4.3 = 3.4.(5- 2) = 3.4.5 - 2.3.4
................................................................
(n -1).n.3 = (n - 1).n.[(n +1) - (n - 2)] = (n-1)n(n+1) -(n-2)(n-1)n
Cộng vế với vế ta có:
3B = (n-1)n(n+1)
B = \(\frac{\left(n-1\right)n\left(n+1\right)}{3}\)
A = B + C
A = \(\frac{n\left(n+1\right)}{2}\) + \(\frac{\left(n-1\right)n\left(n+1\right)}{3}\)
A = n(n+1).(\(\frac12\) + \(\frac{n-1}{3}\))
A = n(n+1).(\(\frac{3+2n-2}{6}\))
A = n(n+1).\(\frac{2n+1}{6}\)
A =\(\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)