Cho tỉ lệ thức \(\frac{x}{3} = \frac{y}{4}\) và \(5 x - 4 y = - 3\). Khi đó:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có:
3x-y/x+y = 3/4
4(3x-y)=3(x+y)
12x-4y = 3x+3y
9x = 7y
x/y = 7/9

1. Theo t/c của dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{x.y}{2.5}=\frac{90}{10}=9\)
\(\frac{x}{2}=9\Rightarrow x=9.2=18\)
\(\frac{y}{5}=9\Rightarrow y=9.5=45\)
Vậy x = 18 ; y = 45

- Vì x và y là 2 đại lượng tỉ lệ thuận :
Nên; y = kx
12 = -3k
=> k = 12 : (-3) = -4

a) Vì y và x là 2 đại lượng tỉ lệ thuận
=> y = k.3
Với x = 3 ; y = -9
=> -9 = k.3
=> k = -3
b) y = -3 . x
c) Với x = 5
=> y = -3 . 5 = -15
Với x = -1/4
=> y = (-3) . (-1/4) = 3/4
d) Với y = 2/3
=> 2/3 = (-3) . x
=> x = -2/9
Với y = 3
=> 3 = (-3) . x
=> x = 1

a) Vì x và y là 2 đại lượng tỉ lệ nghịch. Hệ số tỉ lệ x và y : \(6.\left(-4\right)=-24\)
b) Vì hệ số tỉ lệ là \(-24\) nên công thức liên hệ x và y là \(y=\frac{-24}{x}\) hay \(xy=24\)
c) \(y=2\frac{2}{5}=\frac{12}{5}=\frac{-24}{x}\Leftrightarrow12x=\left(-24\right).5=-120\Leftrightarrow x=-10\)
\(y=\frac{-3}{4}=\frac{-24}{x}\Leftrightarrow\left(-24\right).4=-96=\left(-3\right)x\Leftrightarrow x=\left(-96\right)\div\left(-3\right)=32\)

Bài 2:
Giải:
Đặt \(\frac{x}{4}=\frac{y}{7}=k\Rightarrow x=4k,y=7k\)
Do \(xy=112\)
\(\Rightarrow4.k.7.k=112\)
\(\Rightarrow28.k^2=112\)
\(\Rightarrow k^2=4\)
\(\Rightarrow k=\pm2\)
+) \(k=2\Rightarrow x=8,y=14\)
+) \(k=-2\Rightarrow x=-8,y=-14\)
Vậy cặp số \(\left(x,y\right)\) là \(\left(8,14\right);\left(-8,-14\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{x}{3}=\frac{y}{4}=\frac{5x-4y}{5\cdot3-4\cdot4}=\frac{-3}{-1}=3\)
=>\(x=3\cdot3=9;y=3\cdot4=12\)
x=9;y=12.