3xy-x+2y
giúp mik vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,3\left(x^2-7\right)-x\left(3x+5\right)=3x^2-21-3x^2-5x=-5x-21\\ b,\left(12x^2y^2-6xy\right):3xy+2y=3xy\left(4xy-2\right):3xy+2y=4xy-2+2y\)
\(c,\dfrac{4}{x+1}+\dfrac{8}{\left(x-1\right)\left(x+1\right)}=\dfrac{4\left(x-1\right)+8}{\left(x-1\right)\left(x+1\right)}=\dfrac{4x-4+8}{\left(x-1\right)\left(x+1\right)}=\dfrac{4x+4}{\left(x-1\right)\left(x+1\right)}=\dfrac{4\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{x-1}\)
\(3xy-4x+2y=1\Rightarrow x\left(3y-4\right)=1-2y\Rightarrow x=\dfrac{1-2y}{3y-4}\)
-Vì x,y nguyên nên \(\left(1-2y\right)⋮\left(3y-4\right)\)
\(\Rightarrow\left(3-6y\right)⋮\left(3y-4\right)\)
\(\Rightarrow\left(-6y+8-5\right)⋮\left(3y-4\right)\)
\(\Rightarrow-5⋮\left(3y-4\right)\)
\(\Rightarrow3y-4\inƯ\left\{-5\right\}\)
\(\Rightarrow3y-4\in\left\{1;5;-1;-5\right\}\)
\(\Rightarrow y\in\left\{3;1\right\}\)
*\(y=1\Rightarrow x=\dfrac{1-2.1}{3.1-4}=1\)
*\(y=3\Rightarrow x==\dfrac{1-2.3}{3.3-4}=-1\)
a: \(=5y^2\left(5x+3\right)\)
b: \(=6x\left(x-y\right)+3y\left(x-y\right)\)
\(=3\left(x-y\right)\left(2x+y\right)\)
a.
\(x^2+4y^2+4xy=0\)
\(\Leftrightarrow\left(x+2y\right)^2=0\)
\(\Leftrightarrow x+2y=0\)
\(\Leftrightarrow x=-2y\)
Vậy pt đã cho có vô số nghiệm dạng \(\left(x;y\right)=\left(-2k;k\right)\) với k là số thực bất kì (nếu đề đúng)
b.
\(2y^4-9y^3+2y^2-9y=0\)
\(\Leftrightarrow2y^2\left(y^2+1\right)-9y\left(y^2+1\right)=0\)
\(\Leftrightarrow\left(2y^2-9y\right)\left(y^2+1\right)=0\)
\(\Leftrightarrow y\left(2y-9\right)\left(y^2+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=0\\2y-9=0\\y^2+1=0\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=0\\y=\dfrac{9}{2}\end{matrix}\right.\)
c. Em kiểm tra lại đề chỗ \(3xy^2\), đề đúng như vậy thì pt này ko giải được
a) Ta có: \(M=\left(\dfrac{1}{2}x^2y\right)\cdot\left(\dfrac{2}{3}xy\right)^2\)
\(=\dfrac{1}{2}x^2y\cdot\dfrac{4}{9}x^2y^2\)
\(=\dfrac{2}{9}x^4y^3\)
b) Hệ số là \(\dfrac{2}{9}\)
Phần biến là \(x^4;y^3\)
c) Bậc là 7
d) Thay x=-1 và y=2 vào M, ta được:
\(M=\dfrac{2}{9}\cdot\left(-1\right)^4\cdot2^3=\dfrac{2}{9}\cdot8=\dfrac{16}{9}\)
\(a,=\left(m-y\right)\left(m+y\right)+a\left(m+y\right)=\left(m+y\right)\left(m-y+a\right)\\ b,=3x\left(y-1\right)+\left(y-1\right)\left(y+1\right)=\left(y-1\right)\left(3x+y+1\right)\)
a: \(=\left(m-y\right)\left(m+y\right)+a\left(m+y\right)\)
\(=\left(m+y\right)\left(m-y+a\right)\)
a.\(x^3+y^3+3xy=x^3+y^3+3xy\left(x+y\right)=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3=1\)
b.\(x^3-y^3-3xy=x^3-y^3-3xy\left(x-y\right)=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=1\)
a) x3 + y3 + 3xy
= x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 + 3xy
= ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 - 3xy )
= ( x + y )3 - 3xy( x + y - 1 )
= 13 - 3xy( 1 - 1 )
= 1 - 3xy.0
= 1
b) x3 - y3 - 3xy
= x3 - 3x2y + 3xy2 - y3 + 3x2y - 3xy2 - 3xy
= ( x3 - 3x2y + 3xy2 - y3 ) + ( 3x2y - 3xy2 - 3xy )
= ( x - y )3 + 3xy( x - y - 1 )
= 13 + 3xy( 1 - 1 )
= 1 + 3xy.0
= 1
Bạn nói rõ hơn đi