K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6

chứng minh 2/5<A<8/9 đó ạ


Ta có: \(\frac{1}{2^2}<\frac{1}{1\cdot2}=1-\frac12\)

\(\frac{1}{3^2}<\frac{1}{2\cdot3}=\frac12-\frac13\)

...

\(\frac{1}{9^2}<\frac{1}{8\cdot9}=\frac18-\frac19\)

Do đó: \(\frac{1}{2^2}+\frac{1}{3^2}+\cdots+\frac{1}{9^2}<1-\frac12+\frac12-\frac13+\cdots+\frac18-\frac19\)

=>\(A<1-\frac19=\frac89\left(1\right)\)

Ta có: \(\frac{1}{2^2}>\frac{1}{2\cdot3}=\frac12-\frac13\)

\(\frac{1}{3^2}>\frac{1}{3\cdot4}=\frac13-\frac14\)

...

\(\frac{1}{9^2}>\frac{1}{9\cdot10}=\frac19-\frac{1}{10}\)

Do đó: \(\frac{1}{2^2}+\frac{1}{3^2}+\cdots+\frac{1}{9^2}>\frac12-\frac13+\frac13-\frac14+\cdots+\frac19-\frac{1}{10}\)

=>\(A>\frac12-\frac{1}{10}=\frac25\left(2\right)\)

Từ (1),(2) suy ra \(\frac25

16 tháng 10 2016

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)

\(\Rightarrow A< 1-\frac{1}{9}=\frac{8}{9}\)(1)

Lại có: \(A>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)

\(\Rightarrow A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)

\(A>\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)(2)

Từ (1) và (2), suy ra: \(\frac{2}{5}< A< \frac{8}{9}\)

22 tháng 7 2019

Mik lười quá bạn tham khảo câu 3 tại đây nhé:

Câu hỏi của nguyen linh nhi - Toán lớp 6 - Học toán với OnlineMath

22 tháng 7 2019

\(S=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{37\cdot38\cdot39}\)

\(2S=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{37\cdot38}-\frac{1}{38\cdot39}\)

\(2S=\frac{1}{2}-\frac{1}{38\cdot39}\)

\(S=\frac{1}{4}-\frac{1}{2\cdot38\cdot39}< \frac{1}{4}\)

17 tháng 2 2020

Ta có :

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)

\(\Rightarrow A>\frac{1}{2^2}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)

\(\Leftrightarrow A>\frac{1}{2^2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)

\(=\frac{1}{2^2}+\frac{1}{3}-\frac{1}{10}=\frac{29}{60}\left(1\right)\)

Lại có :

\(A< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\)

\(\Leftrightarrow A< \frac{1}{2^2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)

\(=\frac{1}{2^2}+\frac{1}{2}-\frac{1}{9}=\frac{23}{36}\left(2\right)\)

\(\frac{23}{36}< \frac{24}{36}=\frac{2}{3}\left(3\right)\)

Từ (1), (2) và (3) suy ra \(\frac{29}{60}< A< \frac{2}{3}\)

17 tháng 2 2020

Cám ơn bạn

2 tháng 3 2020

\(A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}\)

\(A>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)

\(\Rightarrow\frac{2}{5}< A< \frac{8}{8}\)

Vây:.....

- Hok tốt ~

2 tháng 3 2020

- k bn ơi ~

Giải:

a)  \(\dfrac{7}{x}< \dfrac{x}{4}< \dfrac{10}{x}\) 

\(\Rightarrow7< \dfrac{x^2}{4}< 10\) 

\(\Rightarrow\dfrac{28}{4}< \dfrac{x^2}{4}< \dfrac{40}{4}\) 

\(\Rightarrow x^2=36\) 

\(\Rightarrow x=6\) 

b) \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}\) 

Ta có:

\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\) 

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\) 

\(\dfrac{1}{4^2}=\dfrac{1}{4.4}< \dfrac{1}{3.4}\) 

\(...\) 

\(\dfrac{1}{9^2}=\dfrac{1}{9.9}< \dfrac{1}{8.9}\) 

\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\) 

\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\) 

\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{9}\) 

\(\Rightarrow A< \dfrac{8}{9}\left(1\right)\) 

Ta có:

\(\dfrac{1}{2^2}=\dfrac{1}{2.2}>\dfrac{1}{2.3}\) 

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}>\dfrac{1}{3.4}\) 

\(\dfrac{1}{4^2}=\dfrac{1}{4.4}>\dfrac{1}{4.5}\) 

 \(...\) 

\(\dfrac{1}{9^2}=\dfrac{1}{9.9}>\dfrac{1}{9.10}\) 

\(\Rightarrow A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}\) 

\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\) 

\(\Rightarrow A>\dfrac{1}{2}-\dfrac{1}{10}\) 

\(\Rightarrow A>\dfrac{2}{5}\left(2\right)\) 

Từ (1) và (2), ta có:

\(\Rightarrow\dfrac{2}{5}< A< \dfrac{8}{9}\left(đpcm\right)\)

25 tháng 5 2021

Bạn có thể viết thay dòng "Từ (1) và (2)" thành "Từ các điều kiện trên" bạn nhé !(bạn ko cần phải sửa, đây chỉ là gợi ý)hihi

27 tháng 3 2019

trong câu hỏi tương tự

14 tháng 7 2016

de ma nhan cho minh minh tra loi cho