1 phòng họp ban đầu có 120 chỗ ngồi nhưng số người đến họp là 165 người nên ta phải kê thêm 3 dãy nữa mà mỗi dãy chỉ thêm 1 người ngồi tính dãy ghế ban đầu <biết phòng họp kê không quá 20 dãy >
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách 2:
Gọi x là số dãy ghế lúc đầu (Đk:x và x là ước của 250, dãy)
Số chỗ ngồi ở mỗi dãy lúc đầu: 250/x (chỗ)
Số dãy ghế lúc sau là x + 3 (dãy). Số chỗ ngồi lúc sau: 308/(x+3) (chỗ).
Vì mỗi dãy ghế phải kê thêm 1 chỗ ngồi nữa thì vừa đủ ta có PT:
308/(x+3)-250/x=1↔x^2-55x+750=0↔[█(x_1=30 (loại) vì 250 không chia hết cho 30@x_2=25 (nhận))┤
Vậy lúc đầu có 25 dãy ghế. Mỗi dãy ghế có 10 chỗ ngồi.
Cách 1:
Gọi x là số dãy ghế lúc đầu; y là số người trên mỗi dãy ghế lúc đầu (x,y>0)
Ta có tổng cộng 250 người nên x.y =250 (1)
Nếu thêm 3 dãy ghế tức x + 3 thì mỗi dãy còn lại phải xếp thêm 1 người tức y + 1
Ta có: (x+3).(y+1) = 250 (2)
Từ (1) và (2) ta có hệ:
Vậy lúc đầu có 25 dãy ghế. Mỗi dãy ghế có 10 chỗ ngồi.
số ghế1 hàng số ghế 1 dãy tổng số ghế
dự tính X \(\dfrac{360}{x}\) 360
thực tế X+1 \(\left(\dfrac{360}{X}\right)+1\) 400
gọi số ghế của 1 hàng là x (dự tính)
=> số ghế của 1 dãy là \(\dfrac{360}{x}\)
thêm 1 hàng theo thực tế X+1
mỗi hàng thêm 1 ghế ( thêm 1 dãy) \(\left(\dfrac{360}{X}\right)+1\)
tổng số ghế thực tế là 400 nên ta có
\(\left(x+1\right).\left(\left(\dfrac{360}{X}\right)+1\right)=400\)
=> x=24
vậy số ghế của 1 hàng và 1 dãy ban đầu lần lượt là 24 và 15
một phòng họp có 120 ghế ngồi được xếp thành các dãy có số ghế như nhau, nhưng số người đến họp là 130 người nên người ta phài kê thêm 3 dãy, và mỗi dãy bớt đi 2 ghế. hỏi ban đầu phòng họp có bao nhiêu dãy ghế
Coi ban đầu có n dãy ghế ( \(n\in N\)*; n < 250 , \(n\inƯ\left(250\right)\))
Ban đầu mỗi dãy có số chỗ ngồi là : \(\frac{250}{n}\) ( chỗ )
Do có 308 người dự họp, btc kê thêm 3 dãy ghế, mỗi dãy thêm một chỗ ngồi nên ta có phương trình :
\(\left(\frac{250}{n}+1\right)\left(n+3\right)=308\)
Bạn giải PT là ra n = 25 (TMĐK) và mỗi dãy ghế có 250 / 25 = 10 ( chỗ ngồi ).
- Gọi số dãy ghế ban đầu là a (dãy) (a\(\in\)N*; a<20)
số ghế một dãy là b (ghế) (b\(\in\)N*; b<120)
=> pt: ab=120 (1)
- Số dãy ghế thực tế là: a+3 (dãy)
- Số ghế mỗi dãy thực tế là: b+1 (ghế)
=> (a+3)(b+1)=165 (20
- Từ (1)(2) => x= 30 (ktmđk) hoặc x=12 (tmđk)
=> hpt (bạn tự giải nhé)
=> a=
TK
Giả sử phòng học lúc đầu có a dãy ghế (a≤20(a≤20)
Khi đó mỗi dãy ghế có 120a120a người.
Khi phòng học có 165 người:
Mỗi dãy ghế có 120a+1120a+1 người
Và có a+3a+3 dãy
⇒(a+3)(120a+1)=165⇒(a+3)(120a+1)=165
⇔a+360a=42⇔a+360a=42
⇔a2−42a+360=0⇔a2−42a+360=0
⇔(a−30)(a−12)=0⇔(a−30)(a−12)=0
Mà a≤20a≤20 nên a=12a=12
Vậy có 12 dãy ghế ban đầu.