\(\) \(-3x^2-9x>0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a ) \(4x^2+2x+1=\left(2x\right)^2+2\cdot2x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(2x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
b ) \(x^2+3x+4=\left(x^2+2\cdot\frac{3}{2}\cdot x+\frac{9}{4}\right)+\frac{7}{4}=\left(x+\frac{3}{2}\right)^2+\frac{7}{4}>0\forall x\)
c ) \(9x^2+3x+5=\left(3x\right)^2+2\cdot3x\cdot\frac{1}{2}+\frac{1}{4}+\frac{19}{4}=\left(3x+\frac{1}{2}\right)^2+\frac{19}{4}>0\forall x\)
Ta có : 4x2 + 2x + 1
= (2x)2 + 2.2x.\(\frac{1}{2}\) + \(\frac{1}{2}+\frac{3}{4}\)
= (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\)
Mà : (2x + \(\frac{1}{2}\))2 \(\ge0\forall x\)
=> (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\) \(\ge\frac{3}{4}\forall x\)
Hay : (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\) \(>0\forall x\)
Vậy 4x2 + 2x + 1 \(>0\forall x\)

\(\frac{3x}{7y}\sqrt{\frac{49y^2}{9x^2}}\) \(=\frac{3x}{7y}|\frac{7y}{3x}|\left(1\right)\)
mà \(x>0,y< 0\)
=>\(\left(1\right)\) = \(\frac{3x.\left(-7y\right)}{7y.3x}=-1\)
chúc bn học tốt
\(\frac{3x}{7y}\sqrt{\frac{49y^2}{9x^2}}\)
\(=\frac{3x}{7y}\sqrt{\frac{\left(7y\right)^2}{\left(3x\right)^2}}\)\(=\frac{3x}{7y}\cdot\frac{\left|7y\right|}{\left|3x\right|}\)
mak ta có \(x>0;y< 0\)
\(\Rightarrow\frac{3x}{7y}\cdot\frac{-7y}{3x}\)\(\Rightarrow\frac{3x\cdot-7y}{7x\cdot3x}=\left(-1\right)\)
\(\Rightarrow\frac{3x}{7y}\sqrt{\frac{49y^2}{9x^2}}=\left(-1\right)\)

\(D=9x^2+3x+\frac{1}{x}+1420=9x^2-6x+1+9x+\frac{1}{x}+1419\)
\(D=\left(3x-1\right)^2+9x+\frac{1}{x}+1419\)
Áp dụng BĐT cauchy :\(9x+\frac{1}{x}\ge2\sqrt{9x.\frac{1}{x}}=6\)
\(\Rightarrow D\ge\left(3x-1\right)^2+1419+6\ge1425\)
dấu = xảy ra khi \(\left\{\begin{matrix}x=\frac{1}{3}\\9x=\frac{1}{x}\end{matrix}\right.\Leftrightarrow x=\frac{1}{3}}\)

ĐKXĐ: \(x\ne\pm3\)
\(P=\left[\dfrac{x\left(x+3\right)}{x^2\left(x+3\right)+9\left(x+3\right)}+\dfrac{3}{x^2+9}\right]:\left[\dfrac{1}{x-3}-\dfrac{6x}{x^2\left(x-3\right)+9\left(x-3\right)}\right]\)
\(=\left[\dfrac{x\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}+\dfrac{3}{x^2+9}\right]:\left[\dfrac{1}{x-3}-\dfrac{6x}{\left(x-3\right)\left(x^2+9\right)}\right]\)
\(=\dfrac{x+3}{x^2+9}:\dfrac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}=\dfrac{x+3}{x^2+9}.\dfrac{\left(x-3\right)\left(x^2+9\right)}{\left(x-3\right)^2}=\dfrac{x+3}{x-3}\)
Ý 2 mình k hiểu ý bạn lắm
\(P=\dfrac{x+3}{x-3}=\dfrac{x-3+6}{x-3}=1+\dfrac{6}{x-3}\in Z\)
\(\Leftrightarrow\left(x-3\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Kết hợp vs ĐKXĐ \(\Rightarrow x\in\left\{0;1;2;4;5;6;9\right\}\)

\(2\left(2x-3\right)\left(3x+2\right)-2\left(x-4\right)\left(4x-3\right)+9x\left(4-x\right)-6=0\)
<=> \(2\left(6x^2-5x-6\right)-2\left(4x^2+13x-12\right)+25x-9x^2-6=0\)
<=> \(12x^2-10x-12-4x^2-26x+24+25x-9x^2-6=0\)
<=>\(-x^2-11x+6=0\)
<=>\(\left[\begin{array}{nghiempt}x=\frac{-11+\sqrt{145}}{2}\\x=\frac{-11-\sqrt{145}}{2}\end{array}\right.\)

( 3x - 1 )( x + 3 ) + 9x2 - 1 = 0
<=> 3x2 + 9x - x - 3 + 9x2 - 1 = 0
<=> 12x2 + 8x - 4 = 0
<=> 4( 3x2 + 2x - 1 ) = 0
<=> 3x2 + 2x - 1 = 0
<=> 3x2 + 3x - x - 1 = 0
<=> ( 3x2 + 3x ) - ( x + 1 ) = 0
<=> 3x( x + 1 ) - 1( x + 1 ) = 0
<=> ( 3x - 1 )( x + 1 ) = 0
<=> \(\orbr{\begin{cases}3x-1=0\\x+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{3}\\x=-1\end{cases}}\)
Vậy S = { 1/3 ; -1 }
\(\frac{x+1}{3}>\frac{3x-2}{5}\)
\(\Leftrightarrow\frac{5\left(x+1\right)}{15}>\frac{3\left(3x-2\right)}{15}\)
\(\Leftrightarrow5x+5>9x-6\)
\(\Leftrightarrow5x-9x>-6-5\)
\(\Leftrightarrow-4x>-11\)
\(\Leftrightarrow x< \frac{11}{4}\)
Bài làm:
a) \(\left(3x-1\right)\left(x+3\right)+9x^2-1=0\)
\(\Leftrightarrow3x^2+8x-3+9x^2-1=0\)
\(\Leftrightarrow12x^2+8x-4=0\)
\(\Leftrightarrow3x^2+2x-1=0\)
\(\Leftrightarrow\left(3x^2+3x\right)-\left(x+1\right)=0\)
\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=-1\end{cases}}\)
Vậy tập nghiệm của PT \(S=\left\{-1;\frac{1}{3}\right\}\)
b) \(\frac{x+1}{3}>\frac{3x-2}{5}\Leftrightarrow\frac{5\left(x+1\right)}{15}>\frac{3\left(3x-2\right)}{15}\)
\(\Rightarrow5x+5>9x-6\)
\(\Leftrightarrow4x< 11\)
\(\Rightarrow x< \frac{11}{4}\)

M=9x^2 - 6x + 1 + 9x + 1/x - 1 = ( 3x - 1 )^2 + ( 9x + 1/x ) - 1 ap dung BDT Co Si ta co : 9x + 1/x >= 2.3 = 6 mat #: ( 3x - 1 )^2 >= 0 => M >= 0 + 6 - 1 = 5 dau =xay ra khi va chi khi x = 1/3
Với x > 0 => x = 1 thì M nhỏ nhất => 9 +3 + 1 = 13.. check mk nhá
Đề yêu cầu chi vậy em?
Ta có: \(-3x^2-9x>0\)
=>-3x(x+3)>0
=>x(x+3)<0
TH1: \(\begin{cases}x>0\\ x+3<0\end{cases}\Rightarrow\begin{cases}x>0\\ x<-3\end{cases}\)
=>Loại
TH2: \(\begin{cases}x<0\\ x+3>0\end{cases}\Rightarrow\begin{cases}x<0\\ x>-3\end{cases}\)
=>-3<x<0