K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5

5 nhé


5 tháng 5

5 nhé bn


18 tháng 11 2021

..., 16, 32, 64, 4096.

18 tháng 11 2021

1; 1; 2; 2; 4; 16; 32; 64; 4096

24 tháng 4 2021

\(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{10^2}\right)\)

\(\dfrac{2^2-1}{2^2}.\dfrac{3^2-1}{3^2}.\dfrac{4^2-1}{4^2}...\dfrac{10^2-1}{10^2}\)

\(\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}.\dfrac{3.5}{4^2}...\dfrac{9.11}{10^2}\)

\(\dfrac{\left(1.2.3...9\right).\left(3.4.5...11\right)}{\left(2.3.4...10\right)\left(2.3.4...10\right)}\)

\(\dfrac{1.11}{10.10}=\dfrac{11}{100}\)

15 tháng 10 2021

quá hay

2 tháng 10 2021

\(C=\left(1-\dfrac{1}{1+2}\right)\left(1-\dfrac{1}{1+2+3}\right)\left(1-\dfrac{1}{1+2+3+4}\right)...\left(1-\dfrac{1}{1+2+3+...+2016}\right)\)

\(=\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{6}\right)...\left(1-\dfrac{1}{\dfrac{\left(2016+1\right).2016}{2}}\right)\)

\(=\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{6}\right)...\left(1-\dfrac{1}{2033136}\right)\)

\(=\dfrac{2}{3}.\dfrac{5}{6}...\dfrac{2033135}{2033136}\)

\(=\dfrac{4}{6}.\dfrac{10}{12}...\dfrac{4066270}{4066272}\)

\(=\left(\dfrac{1}{2}.\dfrac{2}{3}...\dfrac{2015}{2016}\right).\left(\dfrac{4}{3}.\dfrac{5}{4}...\dfrac{2018}{2017}\right)\)

\(=\dfrac{1}{2016}.\dfrac{2018}{3}=\dfrac{1009}{3024}\)

 

3 tháng 10 2021

cảm ơn cậu

29 tháng 5 2023

A =             1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\)\(\dfrac{1}{16}\) + \(\dfrac{1}{32}\)\(\dfrac{1}{64}\)\(\dfrac{1}{128}\)

A\(\times\)2 = 2 + 1 + \(\dfrac{1}{2}\) +  \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\) + \(\dfrac{1}{64}\)

\(\times\) 2 - A = 2 - \(\dfrac{1}{128}\)

\(\times\)( 2-1) = \(\dfrac{255}{128}\)

A = \(\dfrac{255}{128}\)

29 tháng 5 2023

Gọi \(1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\) là T

\(T=1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}+\dfrac{1}{128}\)

\(2T=2+1+\dfrac{1}{2}+\dfrac{1}{4}+....+\dfrac{1}{64}\)

\(2T-T=\left(2+1+\dfrac{1}{2}+\dfrac{1}{4}+....+\dfrac{1}{64}\right)-\left(1+\dfrac{1}{2}+....+\dfrac{1}{64}+\dfrac{1}{128}\right)\)

\(T=2+\left(1-1\right)+\left(\dfrac{1}{2}-\dfrac{1}{2}\right)+....+\left(\dfrac{1}{64}-\dfrac{1}{64}\right)-\dfrac{1}{128}\)

\(T=2+0+0+...-\dfrac{1}{128}\)

\(T=\dfrac{256}{128}-\dfrac{1}{128}\)

\(T=\dfrac{255}{128}\)

17 tháng 8 2015

A=[(1-22)/22][(1-32)/32]...[(1-20152)/20152]

A=[(1+2)(1-2)/22][(1-3)(1+3)/32]...[(1-2015)(1+2015)/20152]

=[(-1).3/2.2][(-2).4/3.3]...[-2014.2016/2015.2015]

=[(-1)(-2)(-3)...(-2013)(-2014).3.4.5...2015]/(2.2.3.3.4.4....2015.2015)

=[2(-3)...(-2014)]/(2.2.3.4.5....2015)

=(-3)(-4)...(-2014)/2.3.4.5....2015

=[-(3.4.5.6....2014)]/(2.3.4...2015)

=-1/1.2015=-1/2015

 

12 tháng 3 2019

\(B=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+...+\frac{1}{x}\left(1+2+...+x\right)\)

\(=1+\frac{1}{2}\cdot\frac{2\cdot3}{2}+\frac{1}{3}\cdot\frac{3\cdot4}{2}+\frac{1}{4}+\frac{4\cdot5}{2}+...+\frac{1}{x}\cdot\frac{x\left(x+1\right)}{2}\)

\(=1+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{x+1}{2}\)

\(=\frac{1}{2}\left(2+3+4+...+x+1\right)\)

\(=\frac{1}{2}\cdot\frac{\left(x+1+2\right)\left(x+1-2+1\right)}{2}\)

\(=\frac{1}{2}\cdot\frac{x\left(x+3\right)}{2}=\frac{x\left(x+3\right)}{4}\).