K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2020

Với y =0 thế vào hệ => vô lí

Với y khác 0

Cộng vế với vế hai phương trình của hệ ta có:

\(x^2y^2+xy^2=y+1\)

<=> \(\left(x^2y^2-1\right)+\left(xy^2-y\right)=0\)

<=> \(\left(xy-1\right)\left(xy+1+y\right)=0\)

TH1: \(xy-1=0\)

<=> \(x=\frac{1}{y}\)

Thế vào hệ ta có:

\(1=\frac{2}{y^2}+y\)

<=> \(y^3-y^2+2=0\)

<=> \(\left(y^3+1\right)-\left(y^2-1\right)=0\)

<=> \(\left(y+1\right)\left(y^2+2y+2\right)=0\)

<=> \(\orbr{\begin{cases}y=-1\\\left(y+1\right)^2+1=0\left(loai\right)\end{cases}}\)

Với y = -1 ta có: x = - 1

TH2: xy + 1 + y = 0

<=> \(x=\frac{-1-y}{y}\) thế vào hệ ta có:

\(\left(y+1\right)^2=\frac{2\left(1+y\right)^2}{y^2}+y\)

<=> \(y^4+y^3-y^2-4y-2=0\)

<=> \(\left(y^4-y^3-y^2\right)+\left(2y^3-2y^2-2y\right)+\left(2y^2-2y-2\right)=0\)

<=> \(\left(y^2-y-1\right)\left(y^2+2y+2\right)=0\)

<=> \(\orbr{\begin{cases}y=\frac{1\pm\sqrt{5}}{2}\\\left(y+1\right)^2+1=0\left(loại\right)\end{cases}}\)

Với \(y=\frac{1-\sqrt{5}}{2}\) ta có: \(x=\frac{-1+\sqrt{5}}{2}\)

Với \(y=\frac{1+\sqrt{5}}{2}\) ta có: \(x=\frac{-1-\sqrt{5}}{2}\)

Kết luận: Hệ có 3 nghiệm:...

17 tháng 10 2020

a) \(ĐK:y-2x+1\ge0;4x+y+5\ge0;x+2y-2\ge0,x\le1\)

Th1: \(\hept{\begin{cases}y-2x+1=0\\3-3x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\-1=\sqrt{10}-1\end{cases}}\)(không thỏa mãn)

Th2: \(x,y\ne1\)

\(2x^2-y^2+xy-5x+y+2=\sqrt{y-2x+1}-\sqrt{3-3x}\)\(\Leftrightarrow\left(x+y-2\right)\left(2x-y-1\right)=\frac{x+y-2}{\sqrt{y-2x+1}+\sqrt{3-3x}}\)\(\Leftrightarrow\left(x+y-2\right)\left(\frac{1}{\sqrt{y-2x+1}+\sqrt{3-3x}}+y-2x+1\right)=0\)

Dễ thấy \(\frac{1}{\sqrt{y-2x+1}+\sqrt{3-3x}}+y-2x+1>0\)nên x + y - 2 = 0

Thay y = 2 - x vào phương trình \(x^2-y-1=\sqrt{4x+y+5}-\sqrt{x+2y-2}\), ta được: \(x^2+x-3=\sqrt{3x+7}-\sqrt{2-x}\)\(\Leftrightarrow x^2+x-2=\sqrt{3x+7}-1+2-\sqrt{2-x}\)\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=\frac{3\left(x+2\right)}{\sqrt{3x+7}+1}+\frac{x+2}{2+\sqrt{2-x}}\)\(\Leftrightarrow\left(x+2\right)\left(\frac{3}{\sqrt{3x+7}+1}+\frac{1}{2+\sqrt{2-x}}+1-x\right)=0\)

Vì \(x\le1\)nên\(\frac{3}{\sqrt{3x+7}+1}+\frac{1}{2+\sqrt{2-x}}+1-x>0\)suy ra x = -2 nên y = 4

Vậy nghiệm của hệ phương trình là (x;y) = (-2;4)

17 tháng 10 2020

b) \(\hept{\begin{cases}x^2+y^2=5\\x^3+2y^3=10x-10y\end{cases}}\Leftrightarrow\hept{\begin{cases}2\left(x^2+y^2\right)=10\left(1\right)\\x^3+2y^3=10\left(x-y\right)\left(2\right)\end{cases}}\)

Thay (1) vào (2), ta được: \(x^3+2y^3=2\left(x^2+y^2\right)\left(x-y\right)\Leftrightarrow\left(2y-x\right)\left(x^2+2y^2\right)=0\)

* Th1: \(x^2+2y^2=0\)(*)

Mà \(x^2\ge0\forall x;2y^2\ge0\forall y\Rightarrow x^2+2y^2\ge0\)nên (*) xảy ra khi x = y = 0 nhưng cặp nghiệm này không thỏa mãn hệ

* Th2: 2y - x = 0 suy ra x = 2y thay vào (1), ta được: \(y^2=1\Rightarrow y=\pm1\Rightarrow x=\pm2\) 

Vậy hệ có 2 nghiệm \(\left(x,y\right)\in\left\{\left(2;1\right);\left(-2;-1\right)\right\}\)

5 tháng 4 2020

\(\hept{\begin{cases}x^2-2y^2=-1\left(1\right)\\2x^3-y^3=2y-x\end{cases}}\)

\(\Rightarrow\left(2x^3-y^2\right)\cdot1=\left(x^2-2y^2\right)\left(2y-x\right)\)(nhân chéo 2 vế để cùng bậc)

\(\Rightarrow2x^3-y^3=2x^2y-x^3-4y^3+2xy^2\)

\(\Rightarrow3x^3-2x^2y-2xy^2+3y^3=0\)

\(\Rightarrow3\left(x+y\right)\left(x^2-xy+y^2\right)-2xy\left(x+y\right)=0\)

\(\Rightarrow\left(x+y\right)\left(3x^2-5xy+3y^2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+y=0\\x=y=0\end{cases}\Rightarrow x=-y}\)

Thay x=-y vào (1): \(x^2-2x^2=-1\Rightarrow x^2=1\Rightarrow\orbr{\begin{cases}x=1\Rightarrow y=-1\\x=-1\Rightarrow y=1\end{cases}}\)

4 tháng 8 2019

MN GIẢI GIÚP E VỚI MAI E ĐI HOK RỒI

15 tháng 3 2020

hãy dùng cái đầu bạn nhé :))))

\(a,\hept{\begin{cases}\left(x-y\right)^2=1\\2x^2+2y^2-2xy-y=0\end{cases}}\)

Xét từng TH với x-y=1 và x-y=-1

\(b,\hept{\begin{cases}\left(x-1\right)\left(y+2\right)=0\\xy-3x+2y=0\end{cases}}\)

Xét từng TH x=1 và y=-2

31 tháng 12 2018

trừ cho nhau là xong

1 tháng 2 2019

Nói nghe có vẻ dễ ha Trần Hữu Ngọc Minh 

11 tháng 5 2020

Ta có \(\hept{\begin{cases}xy^2+2x-4y=-1\\x^2y^3+2xy^2-4x+3y=2\end{cases}\left(I\right)}\)

Ta có \(\left(I\right)\Leftrightarrow\hept{\begin{cases}x^2+\left(y+1\right)^2-x\left(y+1\right)=1\\2x^2=x+y+1\end{cases}}\left(II\right)\)

Đặt t=y+1 ta có hệ

\(\left(II\right)\Leftrightarrow\hept{\begin{cases}x^2+t^2-xt=1\\2x^3=\left(x+t\right)\left(x^2+t^2-xt\right)\end{cases}\Leftrightarrow\hept{\begin{cases}x^2+t^2-xt=1\\x=t\end{cases}\Leftrightarrow}\hept{\begin{cases}x=t=1\\x=t=-1\end{cases}}}\)

Với x=t=1 => y=0

Với x=t=-1 => y=-2

Vậy nghiệm hệ là (1;0);(-1;-2)

11 tháng 5 2020

\(\hept{\begin{cases}xy^2+2x-4y=-1\\x^2y^3+2xy^2-4x+3y=2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}xy^2+\left(2x+1\right)=4y\\\left(x^2y^2+2xy+1\right)y-2\left(2x+1\right)=-2y\end{cases}}\)(*)

- Xét y = 0 thay vào hệ (*), ta được hệ phương trình: \(\hept{\begin{cases}2x+1=0\\-2\left(2x+1\right)=0\end{cases}}\Leftrightarrow x=\frac{-1}{2}\)

Suy ra \(\left(\frac{-1}{2};0\right)\)là một nghiệm của hệ.

- Xét \(y\ne0\), hệ (*) tương đương với: \(\hept{\begin{cases}xy+\frac{2x+1}{y}=4\\x^2y^2+2xy+1-2\left(\frac{2x+1}{y}\right)=-2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(xy+1\right)+\frac{2x+1}{y}=5\\\left(xy+1\right)^2-2\left(\frac{2x+1}{y}\right)=-2\end{cases}}\)(**)

Đặt \(a=xy+1;b=\frac{2x+1}{y}\), khi đó hệ (**) trở thành: \(\hept{\begin{cases}a+b=5\\a^2-2b=-2\end{cases}}\)(***)

Giải hệ (***) tìm được \(\hept{\begin{cases}a=2\\b=3\end{cases}}\)hoặc \(\hept{\begin{cases}a=-4\\b=9\end{cases}}\)

* Với \(\hept{\begin{cases}a=2\\b=3\end{cases}}\)thì \(\hept{\begin{cases}xy+1=2\\\frac{2x+1}{y}=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\left(\frac{2x+1}{3}\right)=1\\y=\frac{2x+1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\)hoặc \(\hept{\begin{cases}x=-\frac{3}{2}\\y=-\frac{2}{3}\end{cases}}\)

* Với \(\hept{\begin{cases}a=-4\\b=9\end{cases}}\)thì \(\hept{\begin{cases}xy+1=-4\\\frac{2x+1}{y}=9\end{cases}}\Leftrightarrow\hept{\begin{cases}x\left(\frac{2x+1}{9}\right)=-5\\y=\frac{2x+1}{9}\end{cases}}\)(vô nghiệm)

Vậy hệ phương trình có 3 nghiệm \(\left(x;y\right)\in\left\{\left(-\frac{1}{2};0\right);\left(1;1\right);\left(-\frac{3}{2};-\frac{2}{3}\right)\right\}\)