\(\left(x+2\right)^2-x^2=36\)
giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(\frac{1}{2}\left(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x\left(x+1\right)}\right)=\frac{2}{9}\cdot\frac{1}{2}\)
\(\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
\(\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
\(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{9}\)
\(\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
\(\frac{1}{x+1}=\frac{1}{6}-\frac{1}{9}\)
\(\frac{1}{x+1}=\frac{1}{18}\)
\(\Rightarrow x+1=18\)
\(x=18-1\)
\(x=17\)
sửa đề số cuối vế trái là \(\frac{1}{x\left(x+1\right)}\)
Đặt A là vế trái
\(\frac{1}{2}A=\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{x\left(x+1\right)}\)
\(=\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{x\left(x+1\right)}\)
\(=\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...-\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}\)
\(=\frac{1}{6}-\frac{1}{x+1}\)
\(\Rightarrow A=\frac{1}{3}-\frac{2}{x+1}=\frac{2}{9}\)
\(\frac{2}{x+1}=\frac{1}{3}-\frac{2}{9}=\frac{1}{9}=\frac{2}{18}\)
\(\Rightarrow x+1=18\Rightarrow x=17\)
Vậy x=17

Ta có: \(\left(x^2-3\right).\left(x^2-36\right)\le0\)
\(\Rightarrow\)\(\orbr{\begin{cases}x^2-3\ge0\\x^2-36\le0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2\ge3\\x^2\le36\end{cases}\Leftrightarrow}\orbr{\begin{cases}x\ge\sqrt{3}ho\text{ặc}x\le-\sqrt{3}\\x\le6ho\text{ặc}x\ge-6\end{cases}}}\)
\(\orbr{\begin{cases}x^2-3\le0\\x^2-36\ge0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2\le3\\x^2\ge36\end{cases}\Leftrightarrow}\orbr{\begin{cases}x\le\sqrt{3}ho\text{ặc}x\ge-\sqrt{3}\\x\ge6ho\text{ặc}x\le-6\end{cases}}}\)
KL:................................................................................................................
( x^2 - 3 )( x^2 - 36 ) \(\le0\)
TH1 : ( x^2 - 3 )( x^2 - 36 ) = 0
=> x^2 - 3 = 0 hoac x^2 - 36 = 0
=> x^2 = 3 hoac x^2 = 36
=> x = \(\sqrt{3}\)hoac bang 6 , -6
TH2 : ( x^2 - 3 )( x^2 - 36 ) < 0
=> x^2 - 3 am va x^2 - 36 duong hoac x^2 - 36 am va x^2 - 3 duong
TH x^2 - 3 am ( 1 ) va x^2 - 36 duong ( 2 )
Xet ( 1 ) thi :
=> x^2 < 2
=> x thuoc 1,0,-1
Nhung de x^2 - 36 duong ( 2 ) thi IxI > 6
Ma 1,0,-1 deu < 6
=> x \(\varnothing\)
TH x^2 - 36 am ( 1 ) va x^2 - 3 duong ( 2 )
Xet ( 1 ) thi :
I x I < 6
=> x \(\in\left\{5,4,3,2,1,0,-1,-2,-3,-4,-5\right\}\)
Xet ( 2 ) thi :
I x I > 2
=> x thuoc { 5,4,3,-3,-4,-5 }
Vay x \(\in\left\{\sqrt{3},6,5,4,3,-3,-4,-5,-6\right\}\)

(x2 + 2)2 - (2 + x)(x - 2)(x2 + 4) + 10
= (x2 + 2)2 - (4 - x2)(x2 + 4) + 10
= x4 + 4x2 + 4 - (16 - x4) + 10
= x4 + 4x2 + 4 - 16 + x4 + 10
= 2x4 + 4x2 - 2

b: =>|x+2|+|2x-1|<x+1(1)
Trường hợp 1: x<-2
(1) sẽ là -x-2-2x+1<x+1
=>-3x-1<x+1
=>-4x<2
hay x>-1/2(loại)
Trường hợp 2: -2<=x<1/2
(1) sẽ là x+2+1-2x<x+1
=>-x+3<x+1
=>-2x<-2
hay x>1(loại)
Trường hợp 3: x>=1/2
(1) sẽ là x+2+2x-1<x+1
=>3x+1<x+1
=>x<0(loại)
Vậy: BPT vô nghiệm
b: =>|x+2|+|2x-1|<x+1(1)
Trường hợp 1: x<-2
(1) sẽ là -x-2-2x+1<x+1
=>-3x-1<x+1
=>-4x<2
hay x>-1/2(loại)
Trường hợp 2: -2<=x<1/2
(1) sẽ là x+2+1-2x<x+1
=>-x+3<x+1
=>-2x<-2
hay x>1(loại)
Trường hợp 3: x>=1/2
(1) sẽ là x+2+2x-1<x+1
=>3x+1<x+1
=>x<0(loại)
Vậy: BPT vô nghiệm
giống Nguyễn Lê Phước Thịnh nhé

\(1.\dfrac{x-1}{3}-x=\dfrac{2x-4}{4}.\Leftrightarrow\dfrac{x-1-3x}{3}=\dfrac{x-2}{2}.\Leftrightarrow\dfrac{-2x-1}{3}-\dfrac{x-2}{2}=0.\)
\(\Leftrightarrow\dfrac{-4x-2-3x+6}{6}=0.\Rightarrow-7x+4=0.\Leftrightarrow x=\dfrac{4}{7}.\)
\(2.\left(x-2\right)\left(2x-1\right)=x^2-2x.\Leftrightarrow\left(x-2\right)\left(2x-1\right)-x\left(x-2\right)=0.\)
\(\Leftrightarrow\left(x-2\right)\left(2x-1-x\right)=0.\Leftrightarrow\left(x-2\right)\left(x-1\right)=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2.\\x=1.\end{matrix}\right.\)
\(3.3x^2-4x+1=0.\Leftrightarrow\left(x-1\right)\left(x-\dfrac{1}{3}\right)=0.\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=\dfrac{1}{3}.\end{matrix}\right.\)
\(4.\left|2x-4\right|=0.\Leftrightarrow2x-4=0.\Leftrightarrow x=2.\)
\(5.\left|3x+2\right|=4.\Leftrightarrow\left[{}\begin{matrix}3x+2=4.\\3x+2=-4.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}.\\x=-2.\end{matrix}\right.\)
\(1,\dfrac{x-1}{3}-x=\dfrac{2x-4}{4}\\ \Leftrightarrow\dfrac{x-1}{3}-x=\dfrac{x-2}{2}\\ \Leftrightarrow\dfrac{2\left(x-1\right)-6x}{6}=\dfrac{3\left(x-2\right)}{6}\\ \Leftrightarrow2\left(x-1\right)-6x=3\left(x-2\right)\\ \Leftrightarrow2x-2-6x=3x-6\\ \Leftrightarrow-4x-2=3x-6\)
\(\Leftrightarrow3x-6+4x+2=0\\ \Leftrightarrow7x-4=0\\ \Leftrightarrow x=\dfrac{4}{7}\)
\(2,\left(x-2\right)\left(2x-1\right)=x^2-2x\\ \Leftrightarrow2x^2-4x-x+2=x^2-2x\\ \Leftrightarrow x^2-3x+2=0\\ \Leftrightarrow\left(x^2-2x\right)-\left(x-2\right)=0\\ \Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(3,3x^2-4x+1=0\\ \Leftrightarrow\left(3x^2-3x\right)-\left(x-1\right)=0\\ \Leftrightarrow3x\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(3x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)
\(4,\left|2x-4\right|=0\\ \Leftrightarrow2x-4=0\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=2\)
\(5,\left|3x+2\right|=4\\ \Leftrightarrow\left[{}\begin{matrix}3x+2=4\\3x+2=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=2\\3x=-6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)
\(6,\left|2x-5\right|=\left|-x+2\right|\\ \Leftrightarrow\left[{}\begin{matrix}2x-5=-x+2\\2x-5=x-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=7\\x=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=3\end{matrix}\right.\)

Bạn ơi mik ra \(\dfrac{x^3+45x-54}{12\left(x-3\right)\left(x+3\right)}\) có đúng không bạn?
Mình rút chx hết bạn bạn gửi cách làm bạn qua mình tham khảo đc k ạ?

Lời giải của mình ở đây nhé bạn!
http://olm.vn/hoi-dap/question/424173.html

Bạn chú ý cách viết phương trình.
Phương trình chỉ có dạng f(x)=g(x) thôi, không có dạng A=f(x)=g(x) như bạn viết.
\(VT=\left[8\left(x+\frac{1}{x}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2\right]+4\left(x^2+\frac{1}{x^2}\right)^2\)
\(=4\left(x+\frac{1}{x}\right)^2\left(2-x^2-\frac{1}{x^2}\right)+4\left(x^2+\frac{1}{x^2}\right)^2\)
\(=-4\left(x+\frac{1}{x}\right)^2\left(x-\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2\)
\(=-4\left(x^2-\frac{1}{x^2}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2\)
\(=-4x^4+8-\frac{4}{x^4}+4x^4+8+\frac{4}{x^4}\)
\(=16\)
Phương trình đã cho trở thành
\(\left(x+4\right)^2=16\\ \Leftrightarrow\orbr{\begin{cases}x+4=-4\\x+4=4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-8\\x=0\end{cases}}\)
chịu
sao v