Cho đường tròn (O,R) với 2 tiếp tuyến AB, Ac. Một tiếp tuyến của đường tròn (O) cắt các cạnh AB, AC kéo dài tại các điễm tương úng P, Q ( P ở ngoài đoạn Ab, Q ở ngoài đoạn Ac). Cho biết góc BAC = 60 A/ tính góc BOC và góc POQ ? Giả sử đoạn OP cắt đường tròn (O) ở M, đoạn thẳng OQ cắt dong72 tròn (O) ờ N.Tính độ dài doạn MN..
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
AB là tiếp tuyến có B là tiếp điểm
AC là tiếp tuyến có C là tiếp điểm
Do đó: AB=AC
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(1)
Ta có: AB=AC
nên A nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
Xét ΔABI vuông tại I và ΔACI vuông tại I có
AB=AC
AI chung
Do đó: ΔABI=ΔACI
Suy ra: IB=IC
a: góc KOA+góc BOA=90 độ
góc KAO+góc COA=90 độ
mà góc BOA=góc COA
nên góc KOA=góc KAO
=>ΔKAO cân tại K
b: Xét ΔOBA vuông tại B có sin BAO=OB/OA=1/2
nên góc BAO=30 độ
=>góc BOA=60 độ
Xét ΔOBI có OB=OI và góc BOI=60 độ
nên ΔOBI đều
=>OI=OB=1/2OA=R
=>I là trung điểm của OA
ΔKAO cân tại K
mà KI là trung tuyến
nên KI vuông góc với OI
=>KI là tiếp tuyến của (O)
1: \(AO=\sqrt{3^2+8^2}=\sqrt{73}\left(cm\right)\)
BC=2*R=6cm
\(CA=\sqrt{AB^2+BC^2}=\sqrt{8^2+6^2}=10\left(cm\right)\)
BD=6*8/10=4,8cm
2: Xét ΔBCE có
O là trung điểm của BC
OH//CE
=>H là trung điểm của BE
ΔOBE cân tại O
mà OH là trung tuyến
nên OH là phân giác của góc BOE
Xét ΔOBA và ΔOEA có
OB=OE
góc BOA=góc EOA
OA chung
=>ΔOBA=ΔOEA
=>góc OEA=90 độ
=>AE là tiếp tuyến của (O)