Chứng minh: C(x) = x^2 + 3 không có nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a:
Thay x=2 vào (1), ta được:
\(2^2-5\cdot2+6=0\)(đúng)
Thay x=2 vào (2), ta được:
\(2+\left(2-2\right)\cdot\left(2\cdot2+1\right)=2\)(đúng)
b: (1)=>(x-2)(x-3)=0
=>S1={2;3}
(2)=>\(x+2x^2+x-4x-2-2=0\)
\(\Leftrightarrow x^2+x-2=0\)
=>(x+2)(x-1)=0
=>S2={-2;1}
vậy: x=3 là nghiệm của (1) nhưng không là nghiệm của (2)

a) Thay x = 3 2 vào (1) và (2) thấy thỏa mãn nên x = 3 2 là nghiệm chung của cả hai PT đã cho.
b) Thay x = -5 vào (2) thấy thỏa mãn nên x = -5 là nghiệm của (2). Thay x = -5 vào (1) thấy không thỏa mãn nên x = -5 không là nghiệm của (1).
c) Cách 1. Tìm được tập nghiệm của (1) và (2) lần lượt là S 1 = { 1 ; 3 2 } và S 2 = { - 5 ; 3 2 }
Vì S 1 ≠ S 2 Þ Hai phương trình không tương đương nhau.
Cách 2. Theo ý b, x = -5 là nghiệm của (2) nhưng không là nghiệm của (1) nên hai PT không có cùng tập nghiệm.

a. Thay x = 2 vào vế trái của phương trình (1), ta có:
22 – 5.2 + 6 = 4 – 10 + 6 = 0
Vế trái bằng vế phải nên x = 2 là nghiệm của phương trình (1).
Thay x = 2 vào vế trái của phương trình (2), ta có:
2 + (2 – 2)(2.2 +1) = 2 + 0 = 2
Vế trái bằng vế phải nên x = 2 là nghiệm của phương trình (2).
Vậy x = 2 là nghiệm chung của hai phương trình (1) và (2).
b. Thay x = 3 vào vế trái của phương trình (1), ta có:
32 – 5.3 + 6 = 9 – 15 + 6 = 0
Vế trái bằng vế phải nên x = 3 là nghiệm của phương trình (1).
Thay x = 3 vào vế trái của phương trình (2), ta có:
3 + (3 – 2)(2.3 + 1) = 3 + 7 = 10 ≠ 2
Vì vế trái khác vế phải nên x = 3 không phải là nghiệm của phương trình (2).
Vậy x = 3 là nghiệm của phương trình (1) nhưng không phải là nghiệm của phương trình (2).
c. Hai phương trình (1) và (2) không tương đương nhau vì x = 3 không phải là nghiệm chung của hai phương trình.

Ta có: \(x^3\ge0\) với mọi \(x\)
\(-4x^2\ge0\) với mọi \(x\)
\(-x\ge0\) với mọi \(x\)
\(1>0\)
⇒ \(x^3-4x^2-x+1>0\) với mọi \(x\)
Vậy đa thức \(P\left(x\right)\) không có nghiệm

Lời giải:
$2M(x)=2x^4+2x^3+4x^2+2=x^4+(x^4+2x^3+x^2)+3x^2+2$
$=x^4+(x^2+x)^2+3x^2+2\geq 2>0$ với mọi $x$
$\Rightarrow M(x)>0$ với mọi $x$
$\Rightarrow$ đa thức $M(x)$ vô nghiệm.


Ta có : \(\frac{2x^3+x^2+3}{4+x}=0\)
\(\Leftrightarrow2x^3+x^2+3=0\)
Mời nhân tài lm nốt.
Ta có: \(x^2>=0\forall x\)
=>\(x^2+3>=3>0\forall x\)
=>\(C\left(x\right)=x^2+3>0\forall x\)
Do đó: C(x) không có nghiệm
với mọi x thuộc R có:
x^2>hoặc=0
=>x^2+3>hoặc=3
=> đa thức C(x) vô nghiệm(đpcm)