K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2017

\(x^2+xy+y^2+1=\left(x^2+xy+\frac{1}{4}y^2\right)+\frac{3}{4}y^2+1=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\forall x;y\)

9 tháng 12 2019

a) \(x^2+2xy+y^2+1\\ =\left(x+y\right)^2+1\\Do\left(x+y\right)^2>0\forall x\in R\\ \Rightarrow\left(x+y\right)^2+1>0\forall\in R\)

3 tháng 7 2016

\(\Leftrightarrow x^2-2.3.x+9+1=\left(x-3\right)^2+1\Rightarrow\hept{\begin{cases}\left(x-3\right)^2\ge0\\1>0\end{cases}}\Rightarrow\left(x-3\right)^2+1>0\)

\(\Leftrightarrow x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{7}{4}>0\end{cases}}\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)

\(\Leftrightarrow2.\left(x^2+xy+y^2+1\right)=x^2+2xy+y^2+x^2+y^2+2=\left(x+y\right)^2+x^2+y^2+2\)

ta có \(\left(x+y\right)^2\ge0,x^2\ge0,y^2\ge0,2>0\Rightarrow\left(x+y\right)^2+x^2+y^2+2>0\)

\(\Leftrightarrow x^2-2xy+y^2+x^2-2.1x+1+y^2+2.2.y+4+3\)\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\)

Ta có \(=\left(x-y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+2\right)^2\ge0,3>0\)\(\Rightarrow=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3>0\)

T i c k cho mình 1 cái nha mới bị trừ 50 đ

7 tháng 8 2015

x2 + xy + y + 1 = (x+ 2.x. \(\frac{y}{2}\) + (\(\frac{y}{2}\))2 ) + \(\frac{3y^2}{4}\) + 1 = (x + \(\frac{y}{2}\))\(\frac{3y^2}{4}\) + 1 \(\ge\) 0 + 0 + 1 = 1> 0 với mọi x; y

7 tháng 8 2015

Ta có:

x2+xy+y2+1=x2+xy+1/4.y2+3/4.y2+1=(x+1/2.y)2+3/4.y2+1

Mà (x+1/2.y)2 \(\ge\)0

3/4.y2>=0

1>0

Suy ra (x+1/2.y)2+3/4.y2+1>0

Hay x2+xy+y2+1>0(đpcm)

6 tháng 6 2018

a/ \(x^2+xy+y^2+1\)=\(\left(x^2+2x\dfrac{y}{2}+\left(\dfrac{y}{2}\right)^2\right)+\dfrac{3y^2}{4}+1\)

=\(\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\) \(\ge\)0

vậy....

b

10 tháng 9 2023

a) \(x^2+xy+y^2+1\)

\(=x^2+xy+\dfrac{y^2}{4}-\dfrac{y^2}{4}+y^2+1\)

\(=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\)

mà \(\left\{{}\begin{matrix}\left(x+\dfrac{y}{2}\right)^2\ge0,\forall x;y\\\dfrac{3y^2}{4}\ge0,\forall x;y\end{matrix}\right.\)

\(\Rightarrow\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1>0,\forall x;y\)

\(\Rightarrow dpcm\)

10 tháng 9 2023

b) \(...=x^2-2x+1+4\left(y^2+2y+1\right)+z^2-6z+9+1\)

\(=\left(x-1\right)^2+4\left(y^{ }+1\right)^2+\left(z-3\right)^2+1>0,\forall x.y\)

\(\Rightarrow dpcm\)

29 tháng 8 2017

Ta có : x2 + 2x + 2

= x2 + 2x + 1 + 1

= (x + 1)2 + 1 \(\ge1\forall x\)

Vậy  x2 + 2x + 2 \(>0\forall x\)

3 tháng 9 2018

Ta có : x2 + 2x + 2

=> x2 + 2x + 1 + 1

=> ( x + 1)2 + 1  >  1\(\forall x\)

Vậy x2 + 2x + 2   > \(0\forall x\)

17 tháng 7 2018

a/ \(x^2-6x+10=x^2-2.x.3+3^2+1=\left(x-3\right)^2+1\)

Với mọi x ta có :

\(\left(x-3\right)^2\ge0\)

\(\Leftrightarrow\left(x-3\right)^2+1>0\)

\(\Leftrightarrow x^2-6x+10>0\)

b/ \(x^2-4x+7=x^2-2.x.2+2^2+3=\left(x-2\right)^2+3\)

Với mọi x ta có :

\(\left(x-2\right)^2\ge0\)

\(\Leftrightarrow\left(x-2\right)^2+3\ge3\)

\(\Leftrightarrow x^2-4x+7\ge3\left(đpcm\right)\)

c/ \(x^2+x+1=x^2+2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Với mọi x ta có :

\(\left(x+\dfrac{1}{2}\right)^2\ge0\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

\(\Leftrightarrow x^2+x+1>0\left(đpcm\right)\)

d/ \(x^2+y^2+4x-6y+15=\left(x^2+4x+2^2\right)+\left(y^2-6y+3^2\right)+2=\left(x+2\right)^2+\left(y-3\right)^2+2\)

Với mọi x,y ta có :

\(\left\{{}\begin{matrix}\left(x+2\right)^2\ge0\\\left(y-3\right)^2\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left(x+2\right)^2+\left(y-3\right)^2\ge0\)

\(\Leftrightarrow\left(x+2\right)^2+\left(y-3\right)^2+2\ge0\)

\(\Leftrightarrow x^2+y^2+4x-6y+15>0\left(đpcm\right)\)

17 tháng 7 2018

2/ Ta có :

\(\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab=a^2-2ab+b^2=\left(a-b\right)^2\)

Vậy \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\left(đpcm\right)\)

3/ \(x^2+y^2=x^2+y^2+2xy-2xy=\left(x+y\right)^2-2xy\)

\(x+y=7;xy=-3\)

\(\Leftrightarrow x^2+y^2=7^2-2.\left(-3\right)=49+6=55\)