K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4

Có nghĩa là 5x-3y-2xy=11 đúng ko bn??

19 tháng 4

5x−3y−2xy=11

\(10 x - 6 y - 4 x y = 22\)

\(\left(\right. 10 x + 15 \left.\right) - \left(\right. 6 y + 4 x y \left.\right) = 37\)

\(5 \left(\right. 2 x + 3 \left.\right) - 2 y \left(\right. 2 x + 3 \left.\right) = 37\)

\(\left(\right. 2 x + 3 \left.\right) \left(\right. 5 - 2 y \left.\right) = 37\)

Ta có bảng sau:

2x+3

-37

-1

1

37

5-2y

-1

-37

37

1

x

-20

-2

-1

17

y

3

21

-16

2

Vậy \(\left(\right. x ; y \left.\right) = \left(\right. - 20 ; 3 \left.\right) ; \left(\right. - 2 ; 21 \left.\right) ; \left(\right. - 1 ; - 16 \left.\right) ; \left(\right. 17 ; 2 \left.\right)\)

Cái bài này là trước kia cx có 1 bn hỏi r. Đây là cách lm của GV. Nguyễn Việt Lâm. Bn xem đc ko?

4 tháng 3 2020

Biểu diễn y theo x :

\(\left(2x+3\right)y=5x+11\)

Dễ thấy :\(2x+3\) khác \(0\) (vì x là số nguyên) do đó:

            \(y=\frac{5x+11}{2x+3}=2+\frac{x+5}{2x+3}\)

Để \(y\)  \(\in\) \(Z\) thì \(x+5\) chia hết cho \(2x+3\)

           \(\implies\) \(2.\left(x+5\right)\) chia hết cho \(2x+3\)

           \(\implies\)   \(2x+10\)   chia hết cho  \(2x+3\) 

           \(\implies\)   \(2x+3+7\) chia hết cho \(2x+3\) 

           \(\implies\)  \(7\) chia hết cho \(2x+3\)

           \(\implies\)  \(2x+3\) \(\in\)   \(Ư\)(\(7\))={ \(1;-1;7;-7\) }

Ta có bảng sau:

\(2x+3\)\(1\)\(-1\)\(7\)\(-7\)
\(x\)\(-1\)\(-2\)\(2\)\(-5\)
\(y\)\(6\)\(-1\)\(3\)\(2\)

Vậy \(\left(x;y\right)\) \(\in\) {\(\left(-1;6\right),\left(-2;-1\right),\left(2;3\right),\left(-5;2\right)\) }

3 tháng 12 2021

1.  \(2xy-x+y=3\)\(\Leftrightarrow4xy-2x+2y=6\Leftrightarrow2x\left(2y-1\right)+\left(2y-1\right)=5\)

\(\Leftrightarrow\left(2y-1\right)\left(2x+1\right)=5\)

Ta lập bảng giá trị:

\(2y-1\)15-1-5
\(2x+1\)51-5-1
\(x\)20-3-1
\(y\)130-2

Vậy phương trình đã cho có cách nghiệm nguyên (2;1);(0;3);(-3;0) và (-1;-2)

3 tháng 12 2021

 2xy-x+y=3

2(2xy-x+y)=2.3

4xy-2x+2y=6

2x(2y-1)-2y=6

2x(2y-1)-2y+1=6+1

2x(2y-1)-(2y-1)=7

(2x-1)(2y-1)=7

4 tháng 3 2020

Biểu diễn y theo x :

\(\left(2x+3\right)y=5x+11\)

Dễ thấy :\(2x+3\) khác \(0\) (vì x là số nguyên) do đó:

            \(y=\frac{5x+11}{2x+3}=2+\frac{x+5}{2x+3}\)

Để \(y\)  \(\in\) \(Z\) thì \(x+5\) chia hết cho \(2x+3\)

           \(\implies\) \(2.\left(x+5\right)\) chia hết cho \(2x+3\)

           \(\implies\)   \(2x+10\)   chia hết cho  \(2x+3\) 

           \(\implies\)   \(2x+3+7\) chia hết cho \(2x+3\) 

           \(\implies\)  \(7\) chia hết cho \(2x+3\)

           \(\implies\)  \(2x+3\) \(\in\)   \(Ư\)(\(7\))={ \(1;-1;7;-7\) }

Ta có bảng sau:

\(2x+3\)\(1\)\(-1\)\(7\)\(-7\)
\(x\)\(-1\)\(-2\)\(2\)\(-5\)
\(y\)\(6\)\(-1\)\(3\)\(2\)

Vậy \(\left(x;y\right)\) \(\in\) {\(\left(-1;6\right),\left(-2;-1\right),\left(2;3\right),\left(-5;2\right)\) }

14 tháng 2 2016

phân tích pt ta được: \(\left(2x-3\right)\left(7-2y\right)=-35\)

9 tháng 10 2020

a) \(5x-3y=2xy-11\)

\(\Leftrightarrow2xy-5x+3y-11=0\)

\(\Leftrightarrow4xy-10x+6y-22=0\)

\(\Leftrightarrow2x\left(2y-5\right)+3\left(2y-5\right)=7\)

\(\Leftrightarrow\left(2x+3\right)\left(2y-5\right)=7=1.7=\left(-1\right).\left(-7\right)\)

Xét các TH sau:

Nếu \(\hept{\begin{cases}2x+3=1\\2y-5=7\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=6\end{cases}}\)

Nếu \(\hept{\begin{cases}2x+3=7\\2y-5=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)

Nếu \(\hept{\begin{cases}2x+3=-1\\2y-5=-7\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-1\end{cases}}\)

Nếu \(\hept{\begin{cases}2x+3=-7\\2y-5=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=2\end{cases}}\)

KL:...

24 tháng 9 2019

Ta có 5x – 3y = 8  ⇔ y = 5 x − 8 3 = 2 x − x + 8 3

Đặt x + 8 3 = t t ∈ ℤ ⇒ x = 3t – 8 ⇒ y = 2 x − x + 8 3 = 2(3t – 8) – t = 5t – 16

⇒ x = 3 t − 8 y = 5 t − 16 t ∈ ℤ

Đáp án: A

19 tháng 10 2017

ta có: \(5x-3y=2xy-11\)

<=>\(2x-2xy+3-3y+3x=-8\)

<=>\(2x\left(1-y\right)+3\left(1-y\right)+\frac{3}{2}\left(2x+3\right)=-\frac{7}{2}\)

<=>\(\left(2x+3\right)\left(1-y\right)+\frac{3}{2}\left(2x+3\right)=-\frac{7}{2}\)

<=>\(\left(2x+3\right)\left(1-y+\frac{3}{2}\right)=-\frac{7}{2}\)

<=>\(\left(2x+3\right)\left(2-2y+3\right)=-7\) 

TH1: \(\hept{\begin{cases}2x+3=1\\2-2y+3=-7\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=6\end{cases}}}\)

TH2:\(\hept{\begin{cases}2x+3=-1\\2-2y+3=7\end{cases}\Rightarrow\hept{\begin{cases}x=-2\\y=-1\end{cases}}}\)

TH3:\(\hept{\begin{cases}2x+3=7\\2-2y+3=-1\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}}\)

TH4:\(\hept{\begin{cases}2x+3=-7\\2-2y+3=1\end{cases}\Rightarrow\hept{\begin{cases}x=-5\\y=2\end{cases}}}\)

Vậy nghiệm của pt là: (x;y)={  (-1;6);(-2;-1);(2;3);(-5;2)}