K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4

-10.9940740741

17 tháng 4

Olm chào em, em nên viết đề bài bằng công thức toán học để mọi người hiểu đúng và đủ đề bài. Có như vậy cộng đồng Olm mới có thể trợ giúp cho em được tốt nhất em nhé.

Sửa đề: x=2024

x=2024 nên x+1=2025

Ta có: \(x^6-2025x^5+2025x^4-2025x^3+2025x^2-2025x+2025\)

\(=x^6-x^5\left(x+1\right)+x^4\left(x+1\right)-x^3\left(x+1\right)+x^2\left(x+1\right)-x\left(x+1\right)+x+1\)

\(=x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+x+1\)

=1

Ko biết

\(\frac{2023\times2024+2025}{2024\times2025-2025}\)

\(=\frac{2024\times\left(2025-2\right)+2025}{2024\times2025-2025}\)

\(=\frac{2024\times2025-2023}{2024\times2025-2025}\)

1 tháng 11 2024

A = \(\dfrac{1}{2021.2022}\) + \(\dfrac{1}{2022.2023}\) + \(\dfrac{1}{2023.2024}\) + \(\dfrac{1}{2024.2025}\) - \(\dfrac{4}{2021.2025}\)

A = \(\dfrac{1}{2021}\) - \(\dfrac{1}{2022}\) + \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\) + \(\dfrac{1}{2023}\) - \(\dfrac{1}{2024}\) + \(\dfrac{1}{2024}\) - \(\dfrac{1}{2025}\) - \(\dfrac{1}{2021}\) + \(\dfrac{1}{2025}\)

A = (\(\dfrac{1}{2021}\) - \(\dfrac{1}{2021}\))  + (\(\dfrac{1}{2022}\) - \(\dfrac{1}{2022}\)) + (\(\dfrac{1}{2023}\) - \(\dfrac{1}{2023}\)) + (\(\dfrac{1}{2024}\) - \(\dfrac{1}{2024}\)) + (\(\dfrac{1}{2025}\) - \(\dfrac{1}{2025}\))

A = 0 + 0  +0  + 0+ ... + 0

A = 0

25 tháng 12 2023

Giúp mình vs ạ

26 tháng 12 2023

A = 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + 9 - 10 - 11 + ... - 2023 + 2024 + 2025

Xét dãy số: 1; 2; 3; 4;..; 2025 là dãy số cách đều với khoảng cách là:

                   2  - 1  = 1

Số số hạng của dãy số trên là: ( 2025 - 1) : 1  + 1 = 2025

                  Vì 2025 : 4 = 506 dư 1 

Nhóm 4 số hạng liên tiếp của A vào nhau thì được A là tổng của 506 nhóm và 2025 khi đó

A =(1-2-3+4)+(5 - 6 - 7 + 8) +...+(2021-2022-2023+2024) + 2025

A = 0 + 0 +...+ 0 + 2025

A = 2025

           

 

          

 

5 tháng 6 2017

\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{[\left(n+1\right)\sqrt{n}-n\sqrt{n+1}].[\left(n+1\right)\sqrt{n}+n\sqrt{n+1}]}\)

=\(\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)^2-n^2\left(n+1\right)}=\dfrac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\dfrac{\sqrt{n}}{n}-\dfrac{\sqrt{n+1}}{n+1}\)

=\(\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

Áp dụng ta có S=\(\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-...+\dfrac{1}{\sqrt{2024}}-\dfrac{1}{\sqrt{2025}}=1-\dfrac{1}{\sqrt{2025}}=1-\dfrac{1}{45}=\dfrac{44}{45}\)

15 tháng 10 2018

Ta có công thức tổng quát:

\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n}.\sqrt{n+1}\left(\sqrt{n+1}+\sqrt{n}\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}\left(n+1-n\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

Vậy \(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{2025\sqrt{2024}+2024\sqrt{2025}}=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{3}}-\dfrac{1}{\sqrt{4}}+...+\dfrac{1}{\sqrt{2024}}-\dfrac{1}{\sqrt{2025}}=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2025}}=1-\dfrac{1}{45}=\dfrac{44}{45}\)

8 tháng 2 2023

\(1:\dfrac{2}{3}:\dfrac{3}{4}:\dfrac{4}{5}:...:\dfrac{2024}{2025}\)

\(1\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot...\cdot\dfrac{2025}{2024}=\dfrac{2025}{2}\)

P
Phong
CTVHS
28 tháng 7 2023

\(6\cdot7^{2025}+7\cdot7^{2025}:7^{2025}\)

\(=6\cdot7^{2025}+7^{2025}:7^{2025}\)
\(=6\cdot7^{2025}+1\)

12 tháng 8

A = \(\frac{2}{5\times6}\) + \(\frac{2}{6\times7}\) + ... + \(\frac{2}{2024\times2025}\)

A = \(\) 2 x (\(\frac{1}{5\times6}\) + \(\frac{1}{6\times7}\) + ... + \(\frac{1}{2024\times2025}\))

A = 2 x (\(\frac15\) - \(\frac16\) + \(\frac16\) - \(\frac17\) + ... + \(\frac{1}{2024}\) - \(\frac{1}{2025}\))

A = 2 x (\(\frac15\) - \(\frac{1}{2025}\))

A = 2 x (\(\frac{405}{2025}-\frac{1}{2025}\))

A = 2 x \(\frac{404}{2025}\)

A = \(\frac{808}{2025}\)