K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4

Đặt \(n^2+3n+5=a^2\) \(\left(a\in N\right)\)

Khi đó: \(4n^2+12n+20=4a^2\)

\(\left(4n^2+12n+9\right)+11=4a^2\)

\(\left(2n+3\right)^2+11=4a^2\)

\(4a^2-\left(2n+3\right)^2=11\)

\(\left(2a-2n-3\right)\left(2a+2n+3\right)=11\)

\(a,n\in N\) nên:

\(2a-2n-3,2a+2n+3\inƯ\left(11\right)=\left\lbrace\pm1,\pm11\right\rbrace\)

\(2a-2n-3<2a+2n+3\)

Do đó:

\(\left(2a-2n-3,2a+2n+3\right)\in\left\lbrace\left(1,11\right),\left(-11,-1\right)\right\rbrace\)

Suy ra: \(2n+3=5\)

\(n=1\) (thỏa mãn điều kiện)

Vậy \(n=1\) thỏa mãn yêu cầu đề bài


16 tháng 4

Olm chào em, đây là toán nâng cao chuyên đề số chính phương, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng nguyên lí kẹp như sau:

Giải:

+ Nếu n = 0 ta có: \(n^2\) + 3n + 5 = 5 (loại)

+ Nếu n > 0 ta có:

2 < 3 < 6

⇒ 2n < 3n < 6n ( ∀ n ∈ N*) (khi nhân cả hai vế của một bất đẳng thức với cùng một số dương thì dấu của bất đẳng thức giữ nguyên)

⇒ n\(^2\) + 2n + 2 < n\(^2\) + 3n + 5 < n\(^2\) + 6n + 9

⇒ (n + 1)\(^2\) < n\(^2\) + 3n + 5 < (n + 3)\(^2\)

Vậy n\(^2\) + 3n + 5 là số chính phương khi và chỉ khi:

n\(^2\) + 3n + 5 = (n + 2)\(^2\)

n\(^2\) + 3n + 5 = n\(^2\) + 4n + 4

3n + 5 = 4n + 4

4n - 3n = 5 - 4

n = 1

Vậy với n = 1 thì n\(^2\) + 3n + 5 là một số chính phương.


đặt 2n + 34 = a^2

34 = a^2-n^2

34=(a-n)(a+n)

a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)

=>     a-n        1        2 

         a+n        34      17

        Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ

      Vậy ....

Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.

=>  S= (1004+14).100:2=50 900 ko là SCP

NV
5 tháng 1 2024

Đặt \(n^2-3n=m^2\) với \(m\in N\)

\(\Rightarrow4n^2-12n=4m^2\)

\(\Rightarrow4n^2-12n+9=4m^2+9\)

\(\Rightarrow\left(2n-3\right)^2-\left(2m\right)^2=9\)

\(\Rightarrow\left(2n-3-2m\right)\left(2n-3+2m\right)=9\)

2n-3-2m-9-3-1139
2n-3+2m-1-3-9931
n-10-1434
m20-220-2

Vậy \(n=\left\{0;3;4\right\}\) là các giá trị thỏa mãn

17 tháng 11 2018

Gọi số cần tìm là a 
Suy ra (a+2) chia hết cho cả 3,4,5,6 
Vậy (a+2) là Bội chung của 3,4,5,6 
=>(a+2)=60k (với k thuôc N) 
vì a chia hết 11 nên 
60k chia 11 dư 2 
<=>55k+5k chia 11 dư 2 
<=>5k chia 11 dư 2 
<=>k chia 11 dư 7 
=>k=11d+7 (với d thuộc N) 
Suy ra số cần tìm là a=60k-2=60(11d+7)-2=660d+418 (với d thuộc N)

NV
24 tháng 2 2021

Đặt \(N=3^n+19\)

Nếu n lẻ \(\Rightarrow n=2k+1\Rightarrow n=3.9^k+19\equiv\left(3-1\right)\left(mod4\right)\equiv2\left(mod4\right)\)

Mà các số chính phương chia 4 chỉ có thể dư 0 hoặc 1

\(\Rightarrow\)N không phải SCP

\(\Rightarrow n\) chẵn \(\Rightarrow n=2k\)

\(\Rightarrow\left(3^k\right)^2+19=m^2\)

\(\Leftrightarrow\left(m-3^k\right)\left(m+3^k\right)=19\)

Pt ước số cơ bản, bạn tự hoàn thành nhé

14 tháng 1 2018

Câu hỏi của Trương Anh Tú - Toán lớp 6 - Học toán với OnlineMath

8 tháng 2 2018

Nếu n=0,suy ra A=0(thỏa mãn)

Nếu n=1 suy rs A=0(thỏa mãn)

Nếu n>1,ta có

A=n.(n^3-2.n^2+3n-2)

A=n.[n.(n^2-2n+3)-2]

A=n.[n.(n-1)^2+2.(n-1)]

A=n.(n-1).[n.(n-1)+2]

Ta thấy:[n.(n-1)]^2<A<[n.(n-1)+1]^2     (tự chứng minh)

Suy ra A không phải là số chính phương với n>1

                                Vậy n={0;1}

13 tháng 3 2021

Do 2n + 1 là số chính phương lẻ nên 2n + 1 chia cho 4 dư 1. Suy ra n chẵn.

Do đó 3n + 1 là số chính phương lẻ. Suy ra 3n + 1 chia cho 8 dư 1 nên n chia hết cho 8.

Ta có số chính phương khi chia cho 5 dư 0; 1 hoặc 4.

Do đó \(2n+1;3n+1\equiv0;1;4\left(mod5\right)\).

Mặt khác \(2n+1+3n+1=5n+2\equiv2\left(mod5\right)\).

Do đó ta phải có \(2n+1;3n+1\equiv1\left(mod5\right)\Rightarrow n⋮5\).

Từ đó n chia hết cho 40.

Với n = 40 ta thấy thỏa mãn

Với n = 80 ta tháy không thỏa mãn.

Vậy n = 40.