K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4
  1. Đặt đa thức bằng 0: \(x^{2} - 2 x + 1 = 0\)
  2. Phân tích đa thức thành nhân tử: Nhận thấy đây là một hằng đẳng thức: \(\left(\right. a - b \left.\right)^{2} = a^{2} - 2 a b + b^{2}\). Vậy, \(x^{2} - 2 x + 1 = \left(\right. x - 1 \left.\right)^{2}\)
  3. Giải phương trình: \(\left(\right. x - 1 \left.\right)^{2} = 0\) \(x - 1 = 0\) \(x = 1\)

Vậy, nghiệm của đa thức \(G \left(\right. x \left.\right) = x^{2} - 2 x + 1\) là \(x = 1\).

15 tháng 4

\(G\left(x\right)=x^2-2x+1=0\)
\(\left(x^2-x\right)-\left(x-1\right)=0\)
\(x\left(x-1\right)-\left(x-1\right)=0\)
\(\left(x-1\right)\left(x-1\right)=0\)
\(\left(x-1\right)^2=0\)
\(x-1=0\)
\(x=1\)

Vậy nghiệm của đa thức \(G\left(x\right)=x^2-2x+1\)\(x=1\)

20 tháng 5 2021

\(x^2-3x-4=0\)

\(< =>x^2+x-4x-4=0\)

\(< =>x\left(x+1\right)-4\left(x+1\right)=0\)

\(< =>\left(x-4\right)\left(x+1\right)=0\)

\(< =>\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)

20 tháng 5 2021

\(2x^3-x^2-2x+1=0\)

\(< =>x^2\left(2x-1\right)-\left(2x-1\right)=0\)

\(< =>\left(x^2-1\right)\left(2x-1\right)=0\)

\(< =>\left(x-1\right)\left(x+1\right)\left(2x+1\right)=0\)

\(< =>\hept{\begin{cases}x=1\\x=-1\\x=-\frac{1}{2}\end{cases}}\)

f(x)=0

=>x=1/2

g(1/2)=0

=>1-1/2a+1=0

=>2-1/2a=0

=>a=4

12 tháng 4 2022

\(f\left(-2\right)=0\)

\(=>2.\left(-2\right)+b=0\)

\(=>-4+b=0 =>b=4\)

12 tháng 4 2022

phần b nữa bạn

12 tháng 6 2021

a) f(x) = 3x3-2x2+7x-1

g(x) = x2+4x-1

b) h(x) = 3x3-2x2+7x-1-x2-4x+1

            = 3x3-3x2+3x

h(x) = 3x3-3x2+3x=0

       ⇒ 3(x3-x2+x)=0

       ⇒ x3-x2+x=0

đến đây mik ko biết làm nữa

1: f(-1)=0 

=>1+m-1+3m-2=0 và 

=>4m-2=0

=>m=1/2

2: g(2)=0

=>2^2-4(m+1)-5m+1=0

=>4-5m+1-4m-4=0

=>-9m+1=0

=>m=1/9

4: f(1)=g(2)

=>1-(m-1)+3m-2=4-4(m+1)-5m+1

=>1-m+1+3m-2=4-4m-4-5m+1

=>2m-2=-9m+1

=>11m=3

=>m=3/11

3:

H(-1)=0

=>-2-m-7m+3=0

=>-8m=-1

=>m=1/8

5: g(1)=h(-2)

=>1-2(m+1)-5m+1=-8-2m-7m+3

=>-5m+2-2m-2=-9m-5

=>-7m=-9m-5

=>2m=-5

=>m=-5/2

28 tháng 7 2023

a) \(f\left(x\right)=x^2-\left(m-1\right)x+3m-2\)

Để đa thức f(x) có nghiệm là -1 khi:

\(f\left(-1\right)=\left(-1\right)^2-\left(m-1\right).\left(-1\right)+3m-2=0\)

\(\Rightarrow1+m-1+3m-2=0\)

\(\Rightarrow4m=2\Rightarrow m=\dfrac{1}{2}\)

b) \(g\left(x\right)=x^2-2\left(m+1\right)x-5m+1\)

Để đa thức g(x) có nghiệm là 2 khi:

\(g\left(2\right)=2^2-2\left(m+1\right).2-5m+1=0\)

\(\Rightarrow4-4\left(m+1\right)-5m+1=0\)

\(\Rightarrow4-4m-1-5m+1=0\)

\(\Rightarrow-9m=-4\Rightarrow m=\dfrac{4}{9}\)

c) \(h\left(x\right)=-2x^2+mx-7m+3\)

Để đa thức h(x) có nghiệm là -1 khi:

\(h\left(-1\right)=-2\left(-1\right)^2+m.\left(-1\right)-7m+3=0\)

\(\Rightarrow-2-m-7m+3=0\)

\(\Rightarrow-8m=-1\Rightarrow m=\dfrac{1}{8}\)

d) -Để \(f\left(1\right)=g\left(2\right)\) khi và chỉ khi

\(1^2-\left(m-1\right).1+3m-2=2^2-2\left(m+1\right).2-5m+1\)

\(\Rightarrow1-m+1+3m-2=4-4m-4-5m+1\)

\(\Rightarrow11m=1\Rightarrow m=\dfrac{1}{11}\)

-Để \(g\left(1\right)=h\left(-2\right)\) khi và chỉ khi

\(1^2-2\left(m+1\right).1-5m+1=-2\left(-2\right)^2+m.\left(-2\right)-7m+3\)

\(\Rightarrow1-2m-2-5m+1=-8-2m-7m+3\)

\(\Rightarrow2m=-5\Rightarrow m=-\dfrac{5}{2}\)

22 tháng 5 2022

`a)` Cho `f(x)=0`

`=>x-1/4x^2=0`

`=>x(1-1/4x)=0`

`@TH1:x=0`

`@TH2:1-1/4x=0=>1/4x=1=>x=4`

_______________________________________________________

`b)` Cho `g(x)=0`

`=>(2x+5)(1-2x)=0`

`@TH1:2x+5=0=>2x=-5=>x=-5/2`

`@TH2:1-2x=0=>2x=1=>x=1/2`

22 tháng 5 2022

a) cho f(x) = 0

\(=>x-\dfrac{1}{4}x^2=0\)

\(x\left(1-\dfrac{1}{4}x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{1}{4}x=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

b) cho g(x) = 0

\(=>\left(2x+5\right)\left(1-2x\right)=0\)

\(=>\left[{}\begin{matrix}2x=-5\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{5}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)