chứng minh 0,9999...= 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có : \(m< 1\Rightarrow m-1< 0\Leftrightarrow\left(\sqrt{m}-1\right)\left(\sqrt{m}+1\right)< 0\)
Vì \(\sqrt{m}+1>0\Rightarrow\sqrt{m}-1< 0\Rightarrow\sqrt{m}< 1\)\(\left(1\right)\)
Ta lại có : \(\sqrt{m}-1< 0\left(cmt\right)\)
Mà \(\sqrt{m}>0\left(m\ne0\right)\Rightarrow\sqrt{m}\left(\sqrt{m}-1\right)< 0\)
\(\Rightarrow m-\sqrt{m}< 0\Leftrightarrow m< \sqrt{m}\left(2\right)\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow m< \sqrt{m}< 1\)khi \(0< m< 1\)\(\left(đpcm\right)\)

Đặt 0,999... = a thì ta có:
a x 10 = 9.999.... = 9 + 0,999.... = 9 + a
a x (10 -1) = 9
a x 9 = 9
=> a = 9/9 = 1
Vậy 0,999.... = 1

vi 1/3*3 là 1 phép tính có 3 chữ số
còn 0,3333.........*3 là 1 phép thính có 2 chữ số

1/ \(3-4\sin^2=4\cos^2x-1\Leftrightarrow4\left(\sin^2x+\cos^2x\right)-4=0\Leftrightarrow4.1-4=0\left(ld\right)\Rightarrow dpcm\)
2/ \(\cos^4x-\sin^4x=\left(\cos^2x+\sin^2x\right)\left(\cos^2x-\sin^2x\right)=\cos^2x-\left(1-\cos^2x\right)=2\cos^2x-1=\left(1-\sin^2x\right)-\sin^2x=1-2\sin^2x\)
3/ \(\sin^4x+\cos^4x=\left(\sin^2x+\cos^2x\right)^2-2\sin^2x.\cos^2x=1-2\sin^2x.\cos^2x\)

1+1=2 là vì các bạn lấy ví dụ ra: 1 cái khăn + 1 cái khăn = 2 cái khăn đơn giản
câu dưới mình ko biết sorry nha
vì 1+1 thì nó bằng 2
trong trò oản tù tì xiên là 1 kéo là 2 nên hai cái đó bẳng nhau

a: \(\dfrac{a}{b}+\dfrac{b}{a}>=2\cdot\sqrt{\dfrac{a}{b}\cdot\dfrac{b}{a}}=2\)
b: a<b
=>-2a>-2b
=>-2a-3>-2b-3
c: =x^2+2xy+y^2+y^2+6y+9
=(x+y)^2+(y+3)^2>=0 với mọi x,y
d: a+3>b+3
=>a>b
=>-5a<-5b
=>-5a+1<-5b+1
0,999.... = 1 khi nó được làm tròn đến hàng đơn vị
Vì chữ số ở hàng phần mười là 9
9 > 5 nên ta làm tròn lên
0,999... làm tròn đến hàng đơn vị được 1 (đpcm)