K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2015

đầy đủ lại nè:

a/

2x^2+4x+2-2y^2

= [2x^2+4x+2] -2y^2

= 2.[x^2+2x+1] - 2.y^2

= 2. [x+1]^2 - 2. y^2

 = 2. [x+1-y]  [x+y+1]

b/

x^2+x-6 = x^2 - 2x + 3x -6 = x.[x-2] +3.[x-2] = [x+3] . [x-2]

c/

x^2+5x+6 = x^2 +2x +3 x + 6 = x.[x+2] + 3.[x+2] = [x+3].[x+2]

 

 

Câu 1: A

Câu 21: A

 

1 tháng 11 2021

\(16,A\\ 17,C\\ 18,A\\ 19,C\\ 20,A\\ 21,A\)

12 tháng 11 2021

a: \(=x^2\left(x-2\right)\)

b: \(=\left(x-3\right)\left(2x-9\right)\)

10 tháng 11 2021

\(a,=x^2\left(x-2\right)\\ b,=\left(x-3\right)\left(2x-9\right)\\ c,=\left(x+2\right)^2-y^2=\left(x-y+2\right)\left(x+y+2\right)\)

14 tháng 10 2021

c: \(x^2-4+3\left(x-2\right)^2\)

\(=\left(x-2\right)\left(x+2\right)+\left(x-2\right)\left(3x-6\right)\)

\(=\left(x-2\right)\left(x+2+3x-6\right)\)

\(=\left(4x-4\right)\left(x-2\right)\)

\(=4\left(x-1\right)\left(x-2\right)\)

a: =(6x)^2-(3x-2)^2

=(6x-3x+2)(6x+3x-2)

=(9x-2)(3x+2)

d: \(=\left[\left(x+1\right)^2-\left(x-1\right)^2\right]\left[\left(x+1\right)^2+\left(x-1\right)^2\right]\)

\(=4x\cdot\left[x^2+2x+1+x^2-2x+1\right]\)

=8x(x^2+1)

e: =(4x)^2-2*4x*3y+(3y)^2

=(4x-3y)^2

f: \(=-\left(\dfrac{1}{4}x^4-2\cdot\dfrac{1}{2}x^2\cdot2y^3+4y^6\right)\)

\(=-\left(\dfrac{1}{2}x^2-2y^3\right)^2\)

g: =(4x)^3+1^3

=(4x+1)(16x^2-4x+1)

k: =x^3(27x^3-8)

=x^3(3x-2)(9x^2+6x+4)

l: =(x^3-y^3)(x^3+y^3)

=(x-y)(x+y)(x^2-xy+y^2)(x^2+xy+y^2)

17 tháng 12 2023

Bài 1

a) 5x²y - 20xy²

= 5xy(x - 4y)

b) 1 - 8x + 16x² - y²

= (1 - 8x + 16x²) - y²

= (1 - 4x)² - y²

= (1 - 4x - y)(1 - 4x + y)

c) 4x - 4 - x²

= -(x² - 4x + 4)

= -(x - 2)²

d) x³ - 2x² + x - xy²

= x(x² - 2x + 1 - y²)

= x[(x² - 2x+ 1) - y²]

= x[(x - 1)² - y²]

= x(x - 1 - y)(x - 1 + y)

= x(x - y - 1)(x + y - 1)

e) 27 - 3x²

= 3(9 - x²)

= 3(3 - x)(3 + x)

f) 2x² + 4x + 2 - 2y²

= 2(x² + 2x + 1 - y²)

= 2[(x² + 2x + 1) - y²]

= 2[(x + 1)² - y²]

= 2(x + 1 - y)(x + 1 + y)

= 2(x - y + 1)(x + y + 1)

17 tháng 12 2023

Bài 2:

a: \(x^2\left(x-2023\right)+x-2023=0\)

=>\(\left(x-2023\right)\left(x^2+1\right)=0\)

mà \(x^2+1>=1>0\forall x\)

nên x-2023=0

=>x=2023

b: 

ĐKXĐ: x<>0

\(-x\left(x-4\right)+\left(2x^3-4x^2-9x\right):x=0\)

=>\(-x\left(x-4\right)+2x^2-4x-9=0\)

=>\(-x^2+4x+2x^2-4x-9=0\)

=>\(x^2-9=0\)

=>(x-3)(x+3)=0

=>\(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

c: \(x^2+2x-3x-6=0\)

=>\(\left(x^2+2x\right)-\left(3x+6\right)=0\)

=>\(x\left(x+2\right)-3\left(x+2\right)=0\)

=>(x+2)(x-3)=0

=>\(\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

d: 3x(x-10)-2x+20=0

=>\(3x\left(x-10\right)-\left(2x-20\right)=0\)

=>\(3x\left(x-10\right)-2\left(x-10\right)=0\)

=>\(\left(x-10\right)\left(3x-2\right)=0\)

=>\(\left[{}\begin{matrix}x-10=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=10\end{matrix}\right.\)

Câu 1:

a: \(5x^2y-20xy^2\)

\(=5xy\cdot x-5xy\cdot4y\)

\(=5xy\left(x-4y\right)\)

b: \(1-8x+16x^2-y^2\)

\(=\left(16x^2-8x+1\right)-y^2\)

\(=\left(4x-1\right)^2-y^2\)

\(=\left(4x-1-y\right)\left(4x-1+y\right)\)

c: \(4x-4-x^2\)

\(=-\left(x^2-4x+4\right)\)

\(=-\left(x-2\right)^2\)

d: \(x^3-2x^2+x-xy^2\)

\(=x\left(x^2-2x+1-y^2\right)\)

\(=x\left[\left(x^2-2x+1\right)-y^2\right]\)

\(=x\left[\left(x-1\right)^2-y^2\right]\)

\(=x\left(x-1-y\right)\left(x-1+y\right)\)

e: \(27-3x^2\)

\(=3\left(9-x^2\right)\)

\(=3\left(3-x\right)\left(3+x\right)\)

f: \(2x^2+4x+2-2y^2\)

\(=2\left(x^2+2x+1-y^2\right)\)

\(=2\left[\left(x^2+2x+1\right)-y^2\right]\)

\(=2\left[\left(x+1\right)^2-y^2\right]\)

\(=2\left(x+1+y\right)\left(x+1-y\right)\)

Bài 1: 

a: Ta có: \(\left(6x+3\right)-\left(2x-5\right)\left(2x+1\right)\)

\(=\left(2x+1\right)\left(3-2x+5\right)\)

\(=\left(2x+1\right)\left(8-2x\right)\)

\(=2\left(4-x\right)\left(2x+1\right)\)

b) Ta có: \(\left(3x-2\right)\left(4x-3\right)-\left(2-3x\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)

\(=\left(3x-2\right)\left(4x-3\right)+\left(3x-2\right)\left(x-1\right)-\left(3x-2\right)\left(2x+2\right)\)

\(=\left(3x-2\right)\left(4x-3+x-1-2x-2\right)\)

\(=\left(3x-2\right)\left(3x-6\right)\)

\(=3\left(3x-2\right)\left(x-2\right)\)

Bài 2: 

a: Ta có: \(\left(a-b\right)\left(a+2b\right)-\left(b-a\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)

\(=\left(a-b\right)\left(a+2b\right)+\left(a-b\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)

\(=\left(a-b\right)\left(a+2b+2a-b-a-3b\right)\)

\(=\left(a-b\right)\left(2a-4b\right)\)

\(=2\left(a-b\right)\left(a-2b\right)\)

f: Ta có: \(x^2-6xy+9y^2+4x-12y\)

\(=\left(x-3y\right)^2+4\left(x-3y\right)\)

\(=\left(x-3y\right)\left(x-3y+4\right)\)

27 tháng 7 2023

a Đề sai: )

b

\(a^3-a^2x-ay+xy\\ =a^2\left(a-x\right)-y\left(a-x\right)\\ =\left(a-x\right)\left(a^2-y\right)\)

c

\(4x^2-y^2+4x+1\\ =\left(2x\right)^2+2.2x.1+1-y^2\\ =\left(2x+1\right)^2-y^2\\ =\left(2x+1-y\right)\left(2x+1+y\right)\)

d

\(x^4+2x^3+x^2\\ =x^4+x^3+x^3+x^2\\ =x^3\left(x+1\right)+x^2\left(x+1\right)\\ =\left(x^3+x^2\right)\left(x+1\right)\)

e

\(5x^2-10xy+5y^2-5z^2\\ =5\left(x^2-2xy+y^2-z^2\right)\\ =5\left[\left(x-y\right)^2-z^2\right]\\ =5\left(x-y-z\right)\left(x-y+z\right)\)

c: =(2x+1)^2-y^2

=(2x+1+y)(2x+1-y)

d: =x^2(x^2+2x+1)

=x^2(x+1)^2

e: =5(x^2-2xy+y^2-z^2)

=5[(x-y)^2-z^2]

=5(x-y-z)(x-y+z)

a: \(=\left(x+1\right)\left(x^2-x+1\right)+5x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+4x+1\right)\)