K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Để A là số nguyên thì \(2x+2⋮x+3\)

\(\Leftrightarrow x+3\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(x\in\left\{-4;-1;-5;1;-7\right\}\)

20 tháng 8 2023

\(A=\left(\dfrac{x+2}{x-\sqrt{x}-2}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}-\dfrac{1-\sqrt{x}}{\sqrt{x}-2}\right)\left(1-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\\ =\left(\dfrac{x+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}-\dfrac{1-\sqrt{x}}{\sqrt{x}-2}\right)\left(\dfrac{\sqrt{x}-2}{\sqrt{x}-2}-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\\ =\left(\dfrac{x+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\dfrac{\left(1-\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\right)\cdot\dfrac{\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-2}\\ =\dfrac{x+2-\left(2x-4\sqrt{x}\right)-\left(\sqrt{x}+1-x-\sqrt{x}\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{\sqrt{x}-2}\)

\(=\dfrac{x+2-2x+4\sqrt{x}-\sqrt{x}-1+x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{\sqrt{x}-2}\\ =\dfrac{4\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{\sqrt{x}-2}\\ =\dfrac{4\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)^2}\)

20 tháng 8 2023

\(A=\left(\dfrac{x+2}{x-\sqrt{x}-2}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}-\dfrac{1-\sqrt{x}}{\sqrt{x}-2}\right)\left(1-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\)

\(A=\left[\dfrac{x+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}-\dfrac{\left(1-\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\right]\left(\dfrac{\sqrt{x}-2}{\sqrt{x}-2}-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\right)\)

\(A=\dfrac{x+2-2x+4\sqrt{x}+x-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-2}\)

\(A=\dfrac{4\sqrt{x}+1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{1}{\sqrt{x}-2}\)

\(A=\dfrac{4\sqrt{x}+1}{\left(\sqrt{x}-2\right)^2\left(\sqrt{x}+1\right)}\)

\(A=\left(\dfrac{x+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\right)\cdot\dfrac{\sqrt{x}+2-\sqrt{x}+3}{\sqrt{x}+2}\)

\(=\dfrac{x+2-2x+4\sqrt{x}+x-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{5}{\sqrt{x}+2}\)

\(=\dfrac{5\left(4\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}\)

11 tháng 11 2018

\(A=\left(\sqrt{x}+2\right):\left(\frac{x+8}{x\sqrt{x}+8}+\frac{\sqrt{x}}{x-2\sqrt{x}+4}-\frac{1}{2+\sqrt{x}}\right)\)

\(=\left(\sqrt{x}+2\right):\left(\frac{x+8+\sqrt{x}\left(\sqrt{x}+2\right)-\left(x-2\sqrt{x}+4\right)}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right)\)

\(=\left(\sqrt{x}+2\right):\left(\frac{x+8+x+2\sqrt{x}-x+2\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right)\)

\(=\left(\sqrt{x}+2\right):\left(\frac{x+4\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right)\)

\(=\left(\sqrt{x}+2\right):\left[\frac{\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}\right]\)

\(=\left(\sqrt{x}+2\right):\frac{\sqrt{x}+2}{x-2\sqrt{x}+4}\)

\(=\frac{\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)}{\sqrt{x}+2}\)

\(=x-2\sqrt{x}+4\)

=.= hok tốt!!

17 tháng 12 2021

tất cả số nguyên x >0 là được

18 tháng 12 2021

Để B>0 thì x+2>0

hay x>-2

7 tháng 2 2022

Với x >= 0 ; x khác 1 

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}.\left(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}+1\right)\)

\(=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)=x-1\)