1/2^2+1/3^2+1/4^2+...+1/20^2. chứng tỏ rằng A<1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Có:1/2^2+1/3^2+...+1/20^2<1/1*2+1/2*3+...+1/19*20=1-1/20=19/20<1


Không spam nha. Chương trình game xin tặng chương trình học online. Nhằm mục đích game được nhiều người chơi.
Thay mặt người đào tạo chương trình hôm nay : Có 200 suất học bỗng cho những học sinh tích cực hoạt động từ bây giờ ( Mỗi suất học bỗng là 100k). Nhận thưởng bằng cách vào google tìm kiếm.
Link như sau vào google hoặc cốc cốc để tìm kiếm:
https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao
Copy cũng được nha
Bạn hack nick mình thu ib dưới vs nha giúp mk chuyện này:))


Đọc kĩ đề 1 tí là làm dc ngay:
\(A=\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2012^2}\)
\(A< \dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2011.2012}\)
\(A< \dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}\)
\(A< \dfrac{1}{2}-\dfrac{1}{2012}< 1\)
Vậy \(A< 1\)
A = \(\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2012^2}\)
Ta có :
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
...
\(\dfrac{1}{2012^2}< \dfrac{1}{2011.2012}\)
=> A = \(\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2012^2}\)< \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2011.2012}\) (1)
Biến đổi vế trái :
\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2011.2012}\)
= \(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}\)
= \(\dfrac{1}{2}-\dfrac{1}{2012}\)
= \(\dfrac{1005}{2012}\)< 1 (2)
Từ (1) và (2), suy ra:
A < 1

ta có
\(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};\frac{1}{4^2}<\frac{1}{3.4};.......;\frac{1}{10^2}<\frac{1}{9.10}\)
=> \(A<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{9.10}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}+......+\frac{1}{9}-\frac{1}{10}\)
\(A<1-\frac{1}{10}=\frac{9}{10}<1\)
vậy A< 1

đặt B=1/1*2+1/2*3+...+1/2011*2012
ta có:A= 1/2^2 + 1/3^2 + 1/4^2 + .... + 1/2010^2 + 1/2011^2 + 1/2012^2<B=1/1*2+1/2*3+...+1/2011*2012 (1)
B=1/1*2+1/2*3+...+1/2011*2012
=1-1/2+1/2-1/3+...+1/2011-1/2012
=1-1/2012<1 (2)
từ (1) và (2) =>A<1

\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\\ A< \frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{50\times51}\\ A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{50}-\frac{1}{51}\\ A< 1-\frac{1}{51}=\frac{49}{51}\\ \Rightarrow A< 2\)

a) Ta thấy: 1/2^2<1/1.2
1/3^2<1/2.3
1/4^2<1/3.4
…………...
1/100^2<1/99.100
=>A<1/1.2+1/2.3+1/3.4+…+1/99.100=99/100
Mà 99/100<1 => 1/22 + 1/32 + 1/42 + ... + 1/1002<1
b)Ta thấy : 1/101+1/102+1/103+…+1/150>1/150+1/150+1/150+…+1/150(50 số hạng)
=>A>50/150>1/3 (1)
Ta thấy : 1/101+1/102+1/103+…+1/150<1/100+1/100+1/100+…+1/100(50 số hạng)
=>A<1/2 (2)
Từ (1) và (2) =>1/3<A<1/2
c) Ta thấy : 1/11 + 1/12 + 1/13 + ... + 1/20>1/20+1/20+1/20+…+1/20(10 số hạng)
=>1/11 + 1/12 + 1/13 + ... + 1/20>1/2
We want to evaluate the sum \(A = \frac{1}{2^{2}} + \frac{1}{3^{2}} + \frac{1}{4^{2}} + \hdots + \frac{1}{2 0^{2}}\), and show that \(A < 1\).
Step-by-step explanation:
- Express the sum mathematically:
\(A = \sum_{n = 2}^{20} \frac{1}{n^{2}} .\)The term \(\frac{1}{n^{2}}\) decreases as \(n\) increases, so the sum converges. To prove \(A < 1\), note that the largest contributions to the sum come from the first few terms.
Since \(\frac{1}{n^{2}} < \frac{1}{n \left(\right. n - 1 \left.\right)}\) for \(n \geq 2\), the sum \(\sum_{n = 2}^{20} \frac{1}{n^{2}}\) is smaller than a telescoping series that can be computed easily. Comparing directly, adding all computed terms does **converging key simpl hint
Ta có:
...
Cộng vế với vế, ta được:
Từ (1) và (2) suy ra: