Câu 1 : Chứng tỏ 4x + 3y chia hết cho 7 khi 2x+5y chia hết cho 7
Câu 2 : Tìm các chữ số x và y để số 2x7y2 chia hết cho 36 ( 0 ≤ x,y ≤ 9 ; x,y ∈ N )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có:
4x + 3y chia hết cho 7
=> 4 (4x + 3y) chia hết cho 7
=> 16x + 12y chia hết cho 7
=> 14x + 7y + 2x + 5y chia hết cho 7
mà 14x + 7y = 7 ( 2x + y) chia hết cho 7
nên 2x+ 5y chia hết cho 7
b) gọi số phải tìm là a
ta có: a + 42 chia hết cho 130, 150 nên a + 42 là bội chung (130, 150)
vậy a = 1908: 3858; 5808; 7758; 9708
đúng nhé
Ta có: x+5y chia hết cho 7
=>x+5y+7.7x chia hết cho 7
=>x+49x+5y chia hết cho 7
=>50x+5y chia hết cho 7
=>5.(10x+y) chia hết cho 7
Mà (5,7)=1
=>10x+y chia hết cho 7
=>ĐPCM
Ngược lại: 10x+y chia hết cho 7
=>5.(10x+y) chia hết cho 7
=>50x+5y chia hết cho 7
=>x+49x+5y chia hết cho 7
=>x+5y+7.7x chia hết cho 7
=>x+5y chia hết cho 7
=>ĐPCM
Đặt A = 2x + 3y , B = 9x + 5y
Xét biểu thức: 9A - 2B = 9.(2x + 3y) - 2.(9x + 5y)
= (18x + 27y) - (18x + 10y)
= 18x + 27y - 18x - 10y
= 17y
Do A chia hết cho 17 => 9A chia hết cho 17
Mà 17y chia hết cho 17 => 2B chia hết cho 17
Mà (2,17)=1 => B chia hết cho 17
Chứng tỏ 2x+3y chia hết cho 9x=5y khi và chỉ khi 9x+5y chia hết cho 17
Bài 2 :
Ta có : 9x + 5y và 17x + 17y chia hết cho 17
=> ( 17x + 17y ) - ( 9x + 5y ) chia hết cho 17
=> 8x + 12y chia hết cho 17
=> 4.(2x+3y) chia hết cho 17
Mà (4;17) = 1 nên 2x + 3y chia hết cho 17
=> đpcm
a) Ko có chuyện đóa đâu nhé bạn !!!!!! ❤❤❤
c) Ta có: \(P=x^3+y^3+6xy\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+6xy\)
\(=\left(x+y\right)^3-3xy\left(x+y-2\right)\)
\(=2^3=8\)
cau 1:
2x+5y chia hết cho 7
=>2(2x+5y) chia hết cho 7
4x+10y chia hết cho 7
(4x+3y)+7y chia hết cho 7
mà 7y chia hết cho 7
nên 4x+3y chia hết cho 7
Vậy 4x+3y chia hết cho 7 khi 2x+5y chia hết cho 7
cau 2:
Vì 2x7y2¯¯¯¯¯¯¯¯¯¯¯¯¯⋮36⇒2x7y2¯¯¯¯¯¯¯¯¯¯¯¯¯⋮92x7y2¯⋮36⇒2x7y2¯⋮9 và ⋮4.⋮4.
Các số chia hết cho 9 có tổng các chữ số chia hết cho 9 nên:
2+x+7+y+2⋮92+x+7+y+2⋮9
Hay11+x+y⋮911+x+y⋮9 (1)
Các số chia hết cho 4 có 2 chữ số tận cùng chia hết cho 4 nên:
y2¯¯¯¯¯⋮4y2¯⋮4
⇒⇒ y∈{1;3;5;7;9}y∈{1;3;5;7;9} thì y2¯¯¯¯¯⋮4y2¯⋮4
Nếu y=1y=1 thì thay vào (1) ta được:
11+xx +1 ⋮9⋮9
⇒⇒ x=6x=6
Tương tự:
y=3y=3 thì 11+x+3x+3 ⋮⋮ 9
⇒⇒ xx =4
y=5y=5 thì 11+xx +5⋮⋮ 9
⇒⇒ xx =2
y=7y=7 thì 11+x+7⋮9x+7⋮9
⇒⇒ xx =0 hoặc xx =9
y=9y=9 thì 11+x+9⋮911+x+9⋮9
⇒⇒ xx =7
Vậy ta có các số:
27792;20792;29772;22752;24732;26712.
k nha