Câu 1. Biết a +1 và 2a +1 đồng thời là các số chính phương. Chứng minh rằng a chia hết cho 12.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a+1 = x^2
2a+1 = y^2;
a phải chẵn vì 2a = y^2-1 = (y-1)(y+1) => 2a chia hết cho 8 vì y-1 va y+1 là tích của 2 số chẵn liên tiếp =>a chia hết cho 2.
a = (x-1)(x+1) vì a là số chẵn nên suy ra a chia hết cho 8 do x-1 và x+1 là tích của 2 số chẵn liên tiếp(dễ dàng cm).
bây h ta cần chứng minh x không chia hết cho 3.
Giả sữ x chia hết cho 3 => x = 3k;
2(a+1) -1 = 2(x-1)(x+1) -1 = 2(9k^2-1) -1 = 18k^2-3 => 2a+1 chia hết cho 3 vô lý vì ta có 2(a+1) chia hết cho 3 nhưng -1 không chia hết cho 3 => x không chia hết cho 3 hay hoặc x-1,hoặc x+1 chia hết cho 3 => điều phải chứng minh.

giả sử 2a+b chia hết cho 3 thì 2 số kia chia 3 dư 1 vì nó là scp
nên 2b+c-2c-a = 2b-a-c chia hết cho 3
lại trừ đi 2a+b thì được b-c-3a chia hết cho 3 suy ra b-c chia hết cho 3
tương tự ta có c-a và a-b chia hết cho 3
cậu phân tích p ra sẽ triệt tiêu hết a^3, b^3 , c^3 và còn lại -3ab(a-b)-3bc(b-c)-3ca(c-a) = -3(a-b)(b-c)(c-a) chia hết cho 81



(x25-x22)+(x22-x19)+(x19-x16)...+(x4-x) chia hết cho x2+x+1
hay x25-x chia hết cho x2+x+1
mà x2+x+1 chia hết cho x2+x+1
=> x25+x2+1 chia hết cho x2+x+1
2.a2(a2-a+2) là cp
Vì a2 là cp để a2(a2-a+2) là cp <=> a2-a+2 cũng là cp <=> 4(a2-a+2) là cp
Đặt 4(a2-a+2)=k2 (k tự nhiên)
<=> (2a-1)2+7=k
<=>7=(k-2a+1)(k+2a-1)=7.1=1.7=-1.(-7)=-7.(-1)
Kẻ bảng tự tìm nốt giá trị của a nhé

a) Nếu n là số chính phương lẻ thì n = (2k + 1)2 = 4k2 + 4k + 1 = 4k(k+1) + 1
Ta thấy ngay k(k + 1) chia hết cho 2, vậy thì 4k(k + 1) chia hết cho 8.
Vậy n chia 8 dư 1.
b) Em tham khảo tại link dưới đây nhé.
Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath
Câu 1: Biết a + 1 và 2a + 1 đồng thời là các số chính phương. Chứng minh rằng a chia hết cho 12.
Lưu ý: Bài toán này có thể sai đề, vì không tồn tại số nguyên dương a thỏa mãn điều kiện đề bài.