K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{2026^2}\)

\(=\dfrac{1}{2^2}\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{1013^2}\right)\)

\(=\dfrac{1}{4}\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{1013^2}\right)\)

\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=1-\dfrac{1}{2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)

...

\(\dfrac{1}{1013^2}< \dfrac{1}{1012\cdot1013}=\dfrac{1}{1012}-\dfrac{1}{1013}\)

Do đó: \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{1013^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{1012}-\dfrac{1}{1013}\)

=>\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{1013^2}< 1-\dfrac{1}{1013}< 1\)

=>\(A=\dfrac{1}{4}\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{1013^2}\right)< \dfrac{1}{4}\cdot1=\dfrac{1}{4}\)

P
Phong
CTVHS
7 tháng 9 2023

1) Ta thấy:

\(4=1+3=1+\sqrt{9}\)

\(1+2\sqrt{2}=1+\sqrt{2^2\cdot2}=1+\sqrt{8}\)

Mà: \(\sqrt{8}< \sqrt{9}\)

\(\Rightarrow1+\sqrt{8}< 1+\sqrt{9}\)

\(\Rightarrow\dfrac{1}{1+\sqrt{8}}>\dfrac{1}{1+\sqrt{9}}\)

\(\Rightarrow\dfrac{1}{1+2\sqrt{2}}>\dfrac{1}{4}\)

2) Ta thấy:

\(2018< 2024\)

\(\Rightarrow\sqrt{2018}< \sqrt{2024}\) (1)

\(2025< 2026\)

\(\Rightarrow\sqrt{2025}< \sqrt{2026}\) (2)

Từ (1) và (2) ta có:

\(\sqrt{2018}+\sqrt{2025}< \sqrt{2024}+\sqrt{2026}\)

9 tháng 8 2016

A = 1/42 + 1/62 + 1/82 + ... + 1/(2n)2

A = 1/22.(1/22 + 1/32 + 1/42 + ... + n2)

A < 1/22.(1/1.2 + 1/2.3 + 1/3.4 + ... + 1/(n-1).n

A < 1/4.(1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... +1/n-1 - 1/n)

A < 1/4.(1 - 1/n) < 1/4.1

A < 1/4

11 tháng 5 2021

có:1/4+1/5+1/6+1/7+...+1/9≤nhỏ hơn 1/6.6=1

1/10+1/11+...+1/15 nhỏ hơn1/5.5=1

⇒1/4+1/5+...+1/15nhỏ hơn1+1=2(đpcm)

ta có

\(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}< \dfrac{1}{4}.4\)

 

\(\Rightarrow\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}< 1\)

và:

\(\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< \dfrac{1}{8}.8\)

 

\(\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}< 1\)

 

\(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{15}< 1+1=2\)

28 tháng 8 2020

a>b vì ...

28 tháng 8 2020

Bài làm:

Ta có: \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}-\frac{1}{8}+\frac{1}{9}-\frac{1}{10}\)

\(A=\left(1+\frac{1}{3}+...+\frac{1}{9}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\)

\(A=\left[\left(1+\frac{1}{3}+...+\frac{1}{9}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\right]-\left[\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)\right]\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{10}\right)=B\)

Vậy A = B

16 tháng 9 2019

\(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(A=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(A=\left(2^8-1\right)\left(2^8+1\right)\)

\(A=2^{16}-1< 2^{16}\)

16 tháng 9 2019

Mình làm theo cách tính nhé !

\(A=\left(2+1\right).\left(2^2+1\right).\left(2^4+1\right).\left(2^8+1\right)\)

\(A=3.\left(4+1\right).\left(16+1\right).\left(256+1\right)\)

\(A=3.5.17.257\)

\(\Rightarrow A=65535\) 

\(B=2^{16}=65536\) 

Từ đó \(\Rightarrow A< B\)