☠☠∞\(\lim_{x\to\infty}\ln\lim_{\sinh\tan\cos\min_{\lim_{x\to\infty}}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\lim_{x\to\infty}\left(\frac{1}{\sqrt[3]{n^3+1}-n}\right)=\lim_{x\to\infty}\left(\frac{1}{\frac{n^3+1-n^3}{\sqrt[3]{\left(n^3+1\right)^2}+n\cdot\sqrt[3]{n^3+1}+n^2}}\right)\)
\(=\lim_{x\to\infty}\left(\sqrt[3]{\left(n^3+1\right)^2}+n\cdot\sqrt[3]{n^3+1}+n^2\right)=\lim_{x\to\infty}\left\lbrack n^2\left(\sqrt[3]{\left(1+\frac{1}{n^3}\right)^2}+\sqrt[3]{1+\frac{1}{n^3}}+1\right)\right\rbrack=+\infty\)
\(\lim_{x\to\infty}\left(\sqrt[3]{n^3-2n^2}-n\right)\)
\(=\lim_{x\to\infty}\frac{n^3-2n^2-n^3}{\sqrt[3]{\left(n^3-2n^2\right)^2}+n\cdot\sqrt[3]{n^3-2n^2}+n^2}\)
\(=\lim_{x\to\infty}\frac{-2n^2}{n^2\cdot\left\lbrack\sqrt[3]{\left(1-\frac{2}{n}\right)^2}+\sqrt[3]{1-\frac{2}{n}}+1\right\rbrack}=\lim_{x\to\infty}\frac{-2}{\left\lbrack\sqrt[3]{\left(1-\frac{2}{n}\right)^2}+\sqrt[3]{1-\frac{2}{n}}+1\right\rbrack}\)
=-∞

Vì cả 3 giới hạn kia đều ko tồn tại, chỉ có giới hạn cuối là tồn tại (do hàm sin, cos là hàm tuần hoàn có chu kì, do đó giới hạn vô cực ko tồn tại)

Lời giải:
\(\lim\limits_{x\to \pm\infty}\sqrt{x^2-3x+4}=\lim\limits_{x\to \pm\infty}\sqrt{x^2}.\lim\limits_{x\to \pm \infty}\sqrt{1-\frac{3}{x}+\frac{4}{x^2}}=\lim\limits_{x\to \pm\infty}|x|.1=+\infty \)
--------------
\(\lim\limits_{x\to +\infty}x(\sqrt{x^2+5}+x)=\lim\limits_{x\to +\infty}x^2.\lim\limits_{x\to +\infty}(\sqrt{1+\frac{5}{x^2}}+1)=2(+\infty )=+\infty \)
\(\lim\limits_{x\to -\infty}x(\sqrt{x^2+5}+x)=\lim\limits_{x\to -\infty}\frac{5x}{\sqrt{x^2+5}-x}=\lim\limits_{x\to -\infty}\frac{-5}{\sqrt{1+\frac{5}{x^2}}+1}=\frac{-5}{2}\)
----------------
\(\lim\limits_{x\to 2019}\frac{\sqrt{x+285}-48}{\sqrt{x-2018}-\sqrt{2020-x}}=\lim\limits_{x\to -\infty}(\sqrt{x+285}-48).\lim\limits_{x\to -\infty}\frac{1}{\sqrt{x-2018}-\sqrt{2020-x}}\)
\(=\lim\limits_{x\to 2019}\frac{x-2019}{\sqrt{x+285}+48}.\lim\limits_{x\to 2019}\frac{\sqrt{x-2018}+\sqrt{2020-x}}{2(x-2019)}=\lim\limits_{x\to 2019}\frac{\sqrt{x-2018}+\sqrt{2020-x}}{2(\sqrt{x+285}+48)}=\frac{1}{96}\)
Lời giải:
\(\lim\limits_{x\to \pm\infty}\sqrt{x^2-3x+4}=\lim\limits_{x\to \pm\infty}\sqrt{x^2}.\lim\limits_{x\to \pm \infty}\sqrt{1-\frac{3}{x}+\frac{4}{x^2}}=\lim\limits_{x\to \pm\infty}|x|.1=+\infty \)
--------------
\(\lim\limits_{x\to +\infty}x(\sqrt{x^2+5}+x)=\lim\limits_{x\to +\infty}x^2.\lim\limits_{x\to +\infty}(\sqrt{1+\frac{5}{x^2}}+1)=2(+\infty )=+\infty \)
\(\lim\limits_{x\to -\infty}x(\sqrt{x^2+5}+x)=\lim\limits_{x\to -\infty}\frac{5x}{\sqrt{x^2+5}-x}=\lim\limits_{x\to -\infty}\frac{-5}{\sqrt{1+\frac{5}{x^2}}+1}=\frac{-5}{2}\)
----------------
\(\lim\limits_{x\to 2019}\frac{\sqrt{x+285}-48}{\sqrt{x-2018}-\sqrt{2020-x}}=\lim\limits_{x\to -\infty}(\sqrt{x+285}-48).\lim\limits_{x\to -\infty}\frac{1}{\sqrt{x-2018}-\sqrt{2020-x}}\)
\(=\lim\limits_{x\to 2019}\frac{x-2019}{\sqrt{x+285}+48}.\lim\limits_{x\to 2019}\frac{\sqrt{x-2018}+\sqrt{2020-x}}{2(x-2019)}=\lim\limits_{x\to 2019}\frac{\sqrt{x-2018}+\sqrt{2020-x}}{2(\sqrt{x+285}+48)}=\frac{1}{96}\)


\(=\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+2x}-\sqrt{x^2+x}+x-\sqrt{x^2+x}\right)\)
\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{x}{\sqrt{x^2+2x}+\sqrt{x^2+x}}-\dfrac{x}{x+\sqrt{x^2+x}}\right)\)
\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{1}{\sqrt{1+\dfrac{2}{x}}+\sqrt{1+\dfrac{1}{x}}}-\dfrac{1}{1+\sqrt{1+\dfrac{1}{x}}}\right)=\dfrac{1}{2}-\dfrac{1}{2}=0\)

Bạn tự hiểu là giới hạn khi x tiến tới dương vô cực
\(=lim\left[x\left(\sqrt{1-\frac{3}{x}+\frac{5}{x^2}}+a\right)\right]=lim\left[x\left(1-a\right)\right]\)
Do \(x\rightarrow+\infty\) nên để giới hạn đã cho bằng \(+\infty\Leftrightarrow1-a>0\Rightarrow a< 1\)
ô weo ô weo