K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 3. Cho đường tròn (O) có tâm O và điểm M nằm ngoài đường tròn (O). Đường thẳngMO cắt (O) tại E và F (ME < MF). Vẽ cát tuyến MAB và tiếp tuyến MC của đường tròn (O)(C là tiếp điểm, A nằm giữa hai điểm M và B, A và C nằm khác phía đối với đường thẳngMO).a)Chứng minh rằng MA.MB = ME.MFb)Gọi H là hình chiếu vuông góc của điểm C lên đường thẳng MO. Chứng minh tứ giácAHOB nội...
Đọc tiếp

Câu 3. Cho đường tròn (O) có tâm O và điểm M nằm ngoài đường tròn (O). Đường thẳngMO cắt (O) tại E và F (ME < MF). Vẽ cát tuyến MAB và tiếp tuyến MC của đường tròn (O)

(C là tiếp điểm, A nằm giữa hai điểm M và B, A và C nằm khác phía đối với đường thẳngMO).
a)Chứng minh rằng MA.MB = ME.MF
b)Gọi H là hình chiếu vuông góc của điểm C lên đường thẳng MO. Chứng minh tứ giác
AHOB nội tiếp.
d)Trên nửa mặt phẳng bờ OM có chứa điểm A, vẽ nửa đường tròn đường kính MF; nửa
đường tròn này cắt tiếp tuyến tại E của (O) ở K. Gọi S là giao điểm của hai đường thẳng CO
và KF. Chứng minh rằng đường thẳng SM vuông góc với đường thẳng KC.
e)Gọi P và Q lần lượt là tâm đường tròn ngoại tiếp các tam giác EFS và ABS; X là trung
điểm của KS. Chứng minh ba điểm P, Q, X thẳng hàng. 

1

a) Xét (O) có 

\(\widehat{EFA}\) là góc nội tiếp chắn cung EA

\(\widehat{EBA}\) là góc nội tiếp chắn cung EA

Do đó: \(\widehat{EFA}=\widehat{EBA}\)(Hệ quả góc nội tiếp)

hay \(\widehat{MBE}=\widehat{MFA}\)

Xét ΔMBE và ΔMFA có 

\(\widehat{MBE}=\widehat{MFA}\)(cmt)

\(\widehat{AMF}\) chung

Do đó: ΔMBE∼ΔMFA(g-g)

Suy ra: \(\dfrac{MB}{MF}=\dfrac{ME}{MA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(MA\cdot MB=ME\cdot MF\)(Đpcm)

19 tháng 5 2022

Lời giải 1 bài toán tương tự - Dài và khó

Giải toán: Bài hình trong đề thi HK2 Lớp 9 | Rất phức tạp. - YouTube

29 tháng 5 2017

GIỐNG ĐỀ MÌNH THẬT!!!

31 tháng 12 2023

a: Xét tứ giác ABCO có

\(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)

nên ABCO là tứ giác nội tiếp đường tròn đường kính OA

=>A,B,C,O cùng thuộc đường tròn đường kính OA

tâm là trung điểm của OA

b: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC tại M và M là trung điểm của BC

Xét ΔOCA vuông tại C có CM là đường cao

nên \(OM\cdot OA=OC^2\)

mà OC=OE(=R)

nên \(OE^2=OM\cdot OA\)

c: Ta có: ΔOEF cân tại O

mà OG là đường trung tuyến

nên OG\(\perp\)EF

Xét ΔOGA vuông tại G và ΔOMH vuông tại M có

\(\widehat{GOA}\) chung

Do đó: ΔOGA đồng dạng với ΔOMH

=>\(\dfrac{OG}{OM}=\dfrac{OA}{OH}\)

=>\(OG\cdot OH=OA\cdot OM=OE^2\)

=>\(\dfrac{OG}{OE}=\dfrac{OE}{OH}\)

Xét ΔOGE và ΔOEH có

\(\dfrac{OG}{OE}=\dfrac{OE}{OH}\)

\(\widehat{GOE}\) chung

Do đó: ΔOGE đồng dạng với ΔOEH

=>\(\widehat{OGE}=\widehat{OEH}\)

=>\(\widehat{OEH}=90^0\)

=>HE là tiếp tuyến của (O)

3 tháng 2 2022

mik chỉ cần câu b thôi

hehe

a: Xét tứ giác ABOC có 

\(\widehat{ABO}+\widehat{ACO}=180^0\)

Do đó: ABOC là tứ giác nội tiếp

c: Xét (O) có 

ΔBED nội tiếp

BD là đường kính

Do đó: ΔBED vuông tại E

Xét ΔBAD vuông tại B có BE là đường cao

nên \(AE\cdot AD=AB^2\left(1\right)\)

Xét ΔOBA vuông tại B có BH là đường cao

nên \(AH\cdot AO=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AD=AH\cdot AO\)

hay \(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)

Xét ΔAEH và ΔAOD có 

\(\dfrac{AE}{AO}=\dfrac{AH}{AD}\)

\(\widehat{HAE}\) chung

Do đó: ΔAEH\(\sim\)ΔAOD

Suy ra: \(\widehat{AHE}=\widehat{ADO}=\widehat{BDE}\)