Cho hình vuông ABCD,lấy điểm E thuộc CD.Tia phân giác góc BAE cắt BC tại M.Chứng minh AM \(\le\)2ME.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
Ta có Qua E kẻ đường thẳng với AB cắt AD tại H.
a)Ta có DAEˆ+FADˆ=90o
Xét trong tam giác vuông tại H(do EH//AB=>HE vuông góc với AD)
Có DAEˆ=AEHˆ=90o
=>AEHˆ=FADˆ.
Xét tam giác HAE và tam giác DFA có:
HE=AD(do HE=AB(c/m dễ dàng))
ADFˆ=EHAˆ=90o
AEHˆ=FADˆ(c/m trên)
=>Tam giác HAE=Tam giác DFA(cạnh huyền-góc nhọn)
=>AE=FA.
Ta có AE=FA=>Tam giác AFE vuông cân tại A
=>AI vừa là trung tuyến cũng vừa là đường vuông góc! xuất phát từ đỉnh.
Từ đây =>FE vuông góc với GK kết hợp với IF=IE,AE//DC(do AB//DC)
Dễ dàng chứng mình được AEKF là hình thoi.
b)Xem lại đề nhé AEF không thể đồng dạng với CAF do CFAˆ=AFEˆ+EFCˆ.
Ta có AC là đường chéo nên cũng là Phân giác của góc đó luôn.
Nên ta có DAKˆ+KACˆ=45o
Ta cũng có AK là phân giác trong tam giác vuông cân tại đỉnh A.
=>KACˆ+CAEˆ=45o
=>CAEˆ=DAKˆ.
Ta xét trong tam giác vuông ADK tại D.
Có AKDˆ+DAKˆ=90o
MÀ FACˆ+EACˆ=90o
hay FACˆ+DAKˆ=90o
=>FACˆ=AKDˆ
Xét hai tam giác AFK và tam giác CFA có:
AFCˆ chung
FACˆ=AKDˆ(c/m trên)
=>Tam giác AFK đồng dạng với tam giác CFA
=>AFFK=CFAF
=>AF2=CF.FK
Học ~ Giỏi
Kẻ MK⊥AE tại K
Xét ΔADM vuông tại D và ΔAKM vuông tại K có
AM chung
\(\widehat{DAM}=\widehat{KAM}\)
Do đó: ΔADM=ΔAKM
=>AD=AK
mà AD=AB
nên AK=AB
Xét ΔAKN và ΔABN có
AK=AB
\(\widehat{KAN}=\widehat{BAN}\)
AN chung
Do đó: ΔAKN=ΔABN
=>\(\widehat{AKN}=\widehat{ABN}=90^0\)
=>NK\(\perp\)AE
mà MK\(\perp\)AE
và MK,NK có điểm chung là K
nên MN\(\perp\)AE
Gọi F là gđ của IK và AE. Cm IA là phân giác của góc DIF. Qua A kẻ đt vuông góc với AK, cắt CD tại M.
Bạn cm các cặp tg bằng nhau : tg ADM = tgABK => tg AMI = tg AKI => đpcm
Kẻ IM\(\perp\)AE
Xét ΔADI vuông tại D và ΔAMI vuông tại M có
AI chung
\(\widehat{DAI}=\widehat{MAI}\)
Do đó: ΔADI=ΔAMI
=>AD=AM
mà AD=AB
nên AM=AB
Xét ΔAMK và ΔABK có
AM=AB
\(\widehat{MAK}=\widehat{BAK}\)
AK chung
Do đó: ΔAMK=ΔABK
=>\(\widehat{AMK}=\widehat{ABK}=90^0\)
\(\widehat{IMK}=\widehat{IMA}+\widehat{KMA}\)
\(=90^0+90^0=180^0\)
=>I,M,K thẳng hàng
=>IK\(\perp\)AE