Hãy so sánh: A=\(\frac{2018-2017}{2018+2017}\) và B=\(\frac{2018^2-2017^2}{2018^2+2017^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy \(A=\frac{2018-2017}{2018+2017}=\frac{2018^2-2017^2}{\left(2018+2017\right)^2}=\frac{2018^2-2017^2}{2018^2+2.2018.2017+2017^2}\)
Mà \(2018^2+2.2018.2017+2017^2>2018^2+2017^2\)
\(\Rightarrow\frac{2018^2-2017^2}{2018^2+2.2018.2017+2017^2}< \frac{2018^2-2017^2}{2018^2+2017^2}\)
Vậy A<B
A=\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+2}+..........+\frac{2018}{2017^2+2017}\)
>\(\frac{2018}{2017^2+2017}+\frac{2018}{2017^2+2017}+........+\frac{2018}{2017^2+2017}\)
\(=\frac{2018}{2017^2+2017}.2017=\frac{2018.2017}{2017\left(2017+1\right)}=1\) (1)
Lại có:A<\(\frac{2018}{2017^2+1}+\frac{2018}{2017^2+1}+.........+\frac{2018}{2017^2+1}\)
\(=\frac{2018}{2017^2+1}.2017=\frac{2018.2017}{2017^2+1}=\frac{2017.\left(2017+1\right)}{2017^2+1}\)
\(=\frac{2017^2+2017}{2017^2+1}=\frac{2017^2+1+2016}{2017^2+1}=1+\frac{2016}{2017^2+1}< 2\) (2)
Từ (1) và (2) suy ra:1 < A < 2
Vậy A không phải là số nguyên
Ta có : \(B=\frac{2015+2016+2017}{2016+2017+2018}\) \(=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Mà \(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)
\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)
\(\frac{2017}{2018}>\frac{2017}{2016+2017+2016}\)
Cộng vế theo vế, ta có :
\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015+2016+2017}{2016+2017+2018}\)
\(\Rightarrow A>B\)
Gọi A = 2017/2018 + 2018/2017
= 2017-1/2018 + 2017+1/2017
= 1 - 1/2018 + 1 + 1/2017
= 2 + ( -1/2018 + 1/2017)
Từ trên => A> 2
K MK NHA . CHÚC BẠN HỌC GIỎI
ĐÚNG 100% NHA
Ta có \(A=\frac{2017-2018}{2017+2018}=\frac{\left(2017-2018\right)\left(2017+2018\right)}{\left(2017+2018\right)^2}=\frac{2017^2-2018^2}{2017^2+2018^2+2.2017.2018}< \frac{2017^2-2018^2}{2017^2+2018^2}=B\)
Vậy A<B