K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3

Olm chào em, em kiểm tra lại đề bài xem đã ghi đúng chưa em nhé. Cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm.

21 tháng 3

đề bài là: \(\frac{x.5}{1.2}.\frac{5}{2.3}.\frac{5}{3.4}.\frac{5}{4.5}\ldots\ldots\frac{5}{x.\left(x+1\right)}\) =\(\frac{495}{100}\)

hay là: \(\frac{x.5}{1.2}+\frac{5}{2.3}+\frac{5}{3.4}+\frac{5}{4.5}+\ldots+\frac{5}{x.\left(x+1\right)}=\frac{495}{100}\)

nếu không thì đề bài là gì

1 tháng 8 2017

Số x cần tìm là : 99

1 tháng 8 2017

Ta có : \(\frac{5}{1.2}+\frac{5}{2.3}+\frac{5}{3.4}+.....+\frac{5}{x\left(x+1\right)}=\frac{99}{20}\)

\(\Rightarrow5\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{x\left(x+1\right)}\right)=\frac{99}{20}\)

\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{x}-\frac{1}{x+1}=\frac{99}{20}.\frac{1}{5}\)

\(\Rightarrow1-\frac{1}{x+1}=\frac{99}{100}\)

\(\Rightarrow\frac{1}{x+1}=1-\frac{99}{100}=\frac{1}{100}\)

=> x + 1 = 100

=> x = 99

15 tháng 7 2019

\(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{8.9}+\frac{1}{9.10}\right)\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-........-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}\)

\(=\frac{10}{10}-\frac{1}{10}=\frac{9}{10}\)

\(\Leftrightarrow\frac{9}{10}.100-\left[\frac{5}{2}:\left(x+\frac{206}{100}\right):\frac{1}{2}\right]=89\)

\(\Leftrightarrow90-\left[\frac{5}{2}:\left(x+\frac{206}{100}\right):\frac{1}{2}\right]=89\)

\(\Leftrightarrow\frac{5}{2}:\left(x+\frac{206}{100}\right):\frac{1}{2}=90-89=1\)

\(\Leftrightarrow\frac{5}{2}:\left(x+\frac{206}{100}\right)=1.\frac{1}{2}=\frac{1}{2}\)

\(\Leftrightarrow x+\frac{206}{100}=\frac{5}{2}:\frac{1}{2}\)

\(\Leftrightarrow x+\frac{103}{50}=\frac{5}{2}.2\)

\(\Leftrightarrow x+\frac{103}{50}=5\)

\(\Leftrightarrow x=5-\frac{103}{50}\)

\(\Leftrightarrow x=\frac{250}{50}-\frac{103}{50}\)

\(\Leftrightarrow x=\frac{147}{50}\)

31 tháng 7 2017

\(\frac{5}{1.2}+\frac{5}{2.3}+\frac{5}{3.4}+...+\frac{5}{x\left(x+1\right)}=\frac{64}{13}\)

\(\Leftrightarrow5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{64}{13}\)

\(\Leftrightarrow1-\frac{1}{x+1}=\frac{64}{13}\div5\)

\(\Leftrightarrow1-\frac{1}{x+1}=\frac{64}{65}\)

\(\Leftrightarrow\frac{1}{x+1}=1-\frac{64}{65}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{65}\)

\(\Rightarrow x+1=65\Rightarrow x=65-1=64\)

\(\text{Vậy }x=64\)

Ta có: \(\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}\right)\cdot100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\Leftrightarrow100\left(\dfrac{1}{1}-\dfrac{1}{10}\right)-\left[\dfrac{5}{2}:\left(x+\dfrac{103}{50}\right)\right]\cdot2=89\)

\(\Leftrightarrow\dfrac{5}{2}:\left(x+\dfrac{103}{50}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow x+\dfrac{103}{50}=5\)

hay \(x=\dfrac{147}{50}\)

21 tháng 7 2017

\(\frac{5}{1.2}+\frac{5}{2.3}+\frac{5}{3.4}+...+\frac{5}{x\left(x+1\right)}=\frac{9998}{9999}\)

\(\Leftrightarrow5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{9998}{9999}\)

\(\Leftrightarrow5\left(1-\frac{1}{x+1}\right)=\frac{9998}{9999}\)

\(\Leftrightarrow1-\frac{1}{x+1}=\frac{9998}{9999}\div5\)

\(\Leftrightarrow1-\frac{1}{x+1}=\frac{9998}{49995}\)

\(\Leftrightarrow\frac{1}{x+1}=1-\frac{9998}{49995}=\frac{39997}{49995}\)

\(\Leftrightarrow x=\frac{9998}{39997}\)

c) Đặt \(A=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)

Ta có: \(A=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)

\(\Leftrightarrow3A=3\cdot\left(1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\right)\)

\(\Leftrightarrow3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+99\cdot100\cdot\left(101-98\right)\)

\(\Leftrightarrow3\cdot A=1\cdot2\cdot3-1\cdot2\cdot3+2\cdot3\cdot4-2\cdot3\cdot4+...+98\cdot99\cdot100-98\cdot99\cdot100+99\cdot100\cdot101\)

\(\Leftrightarrow3\cdot A=99\cdot100\cdot101\)

\(\Leftrightarrow A=33\cdot100\cdot101=333300\)

 

b) Ta có: \(1+2-3-4+...+97+98-99-100\)

\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(97+98-99-100\right)\)

\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)\)

\(=-4\cdot25=-100\)

15 tháng 8 2016

A= 1-2+3-4+4-5+...+99-100

A = ( 1 - 2 ) + ( 2 - 3 ) + ....+ ( 99 - 100 )

A = ( - 1 ) + ( - 1 ) +....+ ( - 1 )

A = ( - 1 ) . 50

A = - 50

B = 1.2 + 2.3 + 3.4 + 4.5 +...+ 99.100 
Nhân cả 2 vế với 3, ta được: 
3A=1.2.3+ 2.3.3+ 3.4.3+ 4.5.3+...... 99.100.3 
= 1.2.3 + 2.3(4-1) + 3.4.(5-2) +...+ 99.100.(101-98) 
= 1.2.3 + 2.3.4 -1.2.3 + 3.4.5-2.3.4 +...+ 99.100.101-98.99.100 
= 99.100.101 
=) B = (99.100.101) :3 
B = 333300  
Vậy  B= 333300 

 

15 tháng 8 2016

A= 1-2+3-4+4-5+...+99-100

A = (1-2) + (3-4) + (4-5) + ... + (99-100)

A = (-1) + (-1) + (-1) + ...+ (-1)

A = (-1).50

A = 1

14 tháng 3 2020

a) 1+2+3+...+100

Số số hạng của dãy là:

(100-1):1+1=100 (số)

Tổng của dãy số trên là:

(100+1).100:2=5050

b) 1+3+5+7+..+99

Số số hạng của dãy trên là:

(99-1):2+1=50(số)

tổng của dãy số trên là:

(99+1).50:2=2500

14 tháng 3 2020

câu c) mk nghĩ nhân 3 lên