\(\frac{x-2}{18}=\frac{-2}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Đặt x2 + 2x = a ta có
\(\frac{1}{a-3}\)+ \(\frac{18}{a+2}\)= \(\frac{18}{a+1}\)
<=> a2 - 15a + 56 = 0
<=> a = (7;8)
Thế vô tìm được nghiệm

ĐKXĐ : \(x\ne1;-3\)
Đặt \(x^2+2x+1=a\) , ta có :
\(\frac{1}{a-4}+\frac{18}{a+1}=\frac{18}{a}\)
\(\Leftrightarrow\frac{a+1+18a-72}{\left(a+1\right)\left(a-4\right)}=\frac{18}{a}\)
\(\Leftrightarrow\frac{19a-71}{a^2-3a-4}=\frac{18}{a}\)
\(\Leftrightarrow19a^2-71a-18a^2+54a+72=0\)
\(\Leftrightarrow a^2-17a+72=0\)
\(\Leftrightarrow\left(a-8\right)\left(a-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=8\\a=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left(x+1\right)^2=8\\\left(x+1\right)^2=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm\sqrt{8}-1\\\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\end{matrix}\right.\)
Vậy ...


\(\frac{x^2}{2}+\frac{18}{x^2}=13\left(\frac{x}{2}-\frac{3}{x}\right)\)
\(\Leftrightarrow\frac{x^2}{2}+\frac{18}{x^2}-\frac{13x}{2}+\frac{39}{x}=0\)
\(\Leftrightarrow\frac{x^4-13x^3+78x+36}{2x^2}=0\)
\(\Leftrightarrow x^4-13x^3+78x+36=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-3\right)\left(x^2-12x-6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-2;x=3\\x^2-12x-6=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-2;x=3\\x=\frac{12\pm\sqrt{168}}{2}\end{cases}}\)

Mình nghĩ phải sửa lại x+1 thành x-1 nha bạn ơi.
\(\frac{2}{x-1}+\frac{18}{x^2+2x-3}=\frac{2x-5}{x+3}\)
\(\Leftrightarrow\frac{2}{x-1}+\frac{18}{x^2-x+3x-3}=\frac{2x-5}{x+3}\)
\(\Leftrightarrow\frac{2}{x-1}+\frac{18}{x\left(x-1\right)+3\left(x-1\right)}=\frac{2x-5}{x+3}\)
\(\Leftrightarrow\frac{2}{x-1}+\frac{18}{\left(x-1\right)\left(x+3\right)}=\frac{2x-5}{x+3}\)
\(\Leftrightarrow\frac{2\left(x+3\right)+18}{\left(x-1\right)\left(x+3\right)}=\frac{\left(2x-5\right)\left(x-1\right)}{\left(x-1\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{2x+6+18}{\left(x-1\right)\left(x+3\right)}=\frac{2x^2-2x-5x+5}{\left(x-1\right)\left(x+3\right)}\)
\(\Leftrightarrow\frac{2x+24}{\left(x-1\right)\left(x+3\right)}=\frac{2x^2-7x+5}{\left(x-1\right)\left(x+3\right)}\)
\(\Rightarrow2x+24=2x^2-7x+5\)
\(\Leftrightarrow2x+24-2x^2+7x-5=0\)
\(\Leftrightarrow-2x^2+9x+19=0\)
Từ đây giải nốt nha bạn
\(ĐKXĐ:x\ne\pm1;x\ne-3\)
\(\frac{2}{x+1}+\frac{18}{x^2+2x-3}=\frac{2x-5}{x+3}\)
\(\Rightarrow\frac{x^2+2x-3}{\left(x^2-1\right)\left(x+3\right)}+\frac{18\left(x+1\right)}{\left(x^2-1\right)\left(x+3\right)}=\frac{\left(x^2-1\right)\left(2x-5\right)}{\left(x^2-1\right)\left(x+3\right)}\)
\(\Rightarrow\frac{x^2+2x-3}{\left(x^2-1\right)\left(x+3\right)}+\frac{18x+18}{\left(x^2-1\right)\left(x+3\right)}=\frac{\left(x^2-1\right)\left(2x-5\right)}{\left(x^2-1\right)\left(x+3\right)}\)
\(\Rightarrow\frac{x^2+20x+15}{\left(x^2-1\right)\left(x+3\right)}=\frac{\left(x^2-1\right)\left(2x-5\right)}{\left(x^2-1\right)\left(x+3\right)}\)
\(\Rightarrow x^2+20x+15=\left(x^2-1\right)\left(2x-5\right)\)
\(\Rightarrow x^2+20x+15=x^3-5x^2-2x+5\)
\(\Rightarrow x^3-6x^2-22x-10=0\)
Giải nghiệm ta được ba nghiệm:
\(\left(\frac{-2103}{988};\frac{-5056}{9331};8,67\right)\)

\(\Rightarrow\left(\frac{7}{3}:x-\frac{2}{3}\right):\frac{7}{4}=-\frac{17}{5}-\frac{10}{9}\Rightarrow\left(\frac{7}{3}:x-\frac{2}{3}\right):\frac{7}{4}=-\frac{203}{45}\Rightarrow\frac{7}{3}:x-\frac{2}{3}=-\frac{1421}{180}\Rightarrow\frac{7}{3}:x=-\frac{1301}{180}\Rightarrow x=-\frac{420}{1301}\)
\(\frac{x-2}{18}=\frac{-2}{3}\)
\(\Rightarrow x-2=\frac{18.\left(-2\right)}{3}\)
\(x-2=-12\)
\(x=-12+2\)
\(x=-10\)
Vậy \(x=-10\)
ta có:(X-2).3=18.(-2)
(X.2)-3=-36
X.2=-36+3
X.2=-33
X=-33:2
X=33/2