tìm các số tự nhiên x, y thỏa mãn
x2+y2=2015
giải chi tiết giúp mk nha
x, y không thỏa mãn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dùng phương pháp chặn :
x \(\le\) y \(\le\) z \(\Rightarrow\) x2 \(\le\) y2 \(\le\) z2 \(\Rightarrow\) x2 + y2 + z2 \(\le\) 3z2
\(\Rightarrow\) 3z2 \(\ge\) 34 \(\Leftrightarrow\) z2 \(\ge\) 34/3 (1)
x2 + y2 + z2 = 34 mà x,y,z \(\in\) N \(\Rightarrow\) z2 \(\le\) 34 (2)
Kết hợp (1) và (2) ta có :
34/3 \(\le\) z2 \(\le\) 34
\(\Rightarrow\) z2 \(\in\) { 16; 25}
vì z \(\in\) N\(\Rightarrow\) z \(\in\) { 4; 5}
th1 Z = 4 ta có :
x2 + y2 + 16 = 34
x2 + y2 = 12
x \(\le\) y \(\Rightarrow\) x2 \(\le\)y2 \(\Rightarrow\) x2 + y2 \(\le\) 2y2 \(\Rightarrow\) 12 \(\le\)2y2 \(\Rightarrow\) y2 \(\ge\) 6 (*)
x2 + y2 = 12 \(\Rightarrow\) y2 \(\le\) 12 (**)
Kết hợp (*) và (**) ta có :
6 \(\le\) y2 \(\le\) 12 \(\Rightarrow\) y2 = 9 vì y \(\in\) N\(\Rightarrow\) y = 3
với y = 3 ta có : x2 + 32 = 12 \(\Rightarrow\) x2 = 12-9 = 3 \(\Rightarrow\) x = +- \(\sqrt{3}\)(loại vì x \(\in\) N)
th2 : z = 5 ta có :
x2 + y2 + 25 = 34
\(\Rightarrow\) x2 + y2 = 34 - 25 = 9
x \(\le\) y \(\Rightarrow\) x2 \(\le\) y2 \(\Rightarrow\) x2 + y2 \(\le\)2y2 \(\Rightarrow\) 2y2 \(\ge\) 9 \(\Rightarrow\) y2 \(\ge\) 9/2 (a)
x2 + y2 = 9 \(\Rightarrow\) y2 \(\le\) 9 (b)
Kết hợp (a) và (b) ta có :
9/2 \(\le\) y2 \(\le\) 9 \(\Rightarrow\) y2 = 9 vì y \(\in\) N \(\Rightarrow\) y = 3
với y = 3 \(\Rightarrow\) x2 + 32 = 9 \(\Rightarrow\) x2 = 0 \(\Rightarrow\) x = 0
kết luận (x; y; z) =( 0; 3; 5) là nghiệm duy nhất thỏa mãn pt
\(xy-2x+y+1=0\\ x\left(y-2\right)+\left(y-2\right)=-3\\ \left(x+1\right)\left(y-2\right)=-3\)
Lập bảng
x+1 | 1 | 3 | -1 | -3 |
y-2 | 3 | 1 | -3 | -1 |
x | 0 | 2 | -2 | -4 |
y | 5 | 3 | -1 | 1 |
Vậy \(\left(x;y\right)\in\left\{\left(0;5\right);\left(2;3\right);\left(-2;-1\right);\left(-4;1\right)\right\}\)
xy−2x+y+1=0x(y−2)+(y−2)=−3(x+1)(y−2)=−3xy−2x+y+1=0x(y−2)+(y−2)=−3(x+1)(y−2)=−3
Lập bảng
x+1 | 1 | 3 | -1 | -3 |
y-2 | 3 | 1 | -3 | -1 |
x | 0 | 2 | -2 | -4 |
y | 5 | 3 | -1 | 1 |
Vậy (x;y)∈{(0;5);(2;3);(−2;−1);(−4;1)}
a) Ta đặt \(P\left(x\right)=x^2+x+1\)
\(P\left(x\right)=x^2+x-20+21\)
\(P\left(x\right)=\left(x+5\right)\left(x-4\right)+21\)
Giả sử tồn tại số tự nhiên \(x\) mà \(P\left(x\right)⋮9\) \(\Rightarrow P\left(x\right)⋮3\). Do \(21⋮3\) nên \(\left(x+5\right)\left(x-4\right)⋮3\).
Mà 3 là số nguyên tố nên suy ra \(\left[{}\begin{matrix}x+5⋮3\\x-4⋮3\end{matrix}\right.\)
Nếu \(x+5⋮3\) thì suy ra \(x-4=\left(x+5\right)-9⋮3\) \(\Rightarrow\left(x+4\right)\left(x-5\right)⋮9\)
Lại có \(P\left(x\right)⋮9\) nên \(21⋮9\), vô lí.
Nếu \(x-4⋮3\) thì suy ra \(x+5=\left(x-4\right)+9⋮3\) \(\Rightarrow\left(x+4\right)\left(x-5\right)⋮9\)
Lại có \(P\left(x\right)⋮9\) nên \(21⋮9\), vô lí.
Vậy điều giả sử là sai \(\Rightarrow x^2+x+1⋮̸9\)
b) Vì \(x^2+x+1⋮̸9\) nên \(y\le1\Rightarrow y\in\left\{0;1\right\}\)
Nếu \(y=0\Rightarrow x^2+x+1=1\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=-1\left(loại\right)\end{matrix}\right.\)
Nếu \(y=1\) \(\Rightarrow x^2+x+1=3\)
\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-2\left(loại\right)\end{matrix}\right.\)
Vậy ta tìm được các cặp số (x; y) thỏa ycbt là \(\left(0;0\right);\left(1;1\right)\)
a) Ta đặt
�
(
�
)
=
�
2
+
�
+
1
P(x)=x
2
+x+1
�
(
�
)
=
�
2
+
�
−
20
+
21
P(x)=x
2
+x−20+21
�
(
�
)
=
(
�
+
5
)
(
�
−
4
)
+
21
P(x)=(x+5)(x−4)+21
Giả sử tồn tại số tự nhiên
�
x mà
�
(
�
)
⋮
9
P(x)⋮9
⇒
�
(
�
)
⋮
3
⇒P(x)⋮3. Do
21
⋮
3
21⋮3 nên
(
�
+
5
)
(
�
−
4
)
⋮
3
(x+5)(x−4)⋮3.
Mà 3 là số nguyên tố nên suy ra
[
�
+
5
⋮
3
�
−
4
⋮
3
x+5⋮3
x−4⋮3
Nếu
�
+
5
⋮
3
x+5⋮3 thì suy ra
�
−
4
=
(
�
+
5
)
−
9
⋮
3
x−4=(x+5)−9⋮3
⇒
(
�
+
4
)
(
�
−
5
)
⋮
9
⇒(x+4)(x−5)⋮9
Lại có
�
(
�
)
⋮
9
P(x)⋮9 nên
21
⋮
9
21⋮9, vô lí.
Nếu
�
−
4
⋮
3
x−4⋮3 thì suy ra
�
+
5
=
(
�
−
4
)
+
9
⋮
3
x+5=(x−4)+9⋮3
⇒
(
�
+
4
)
(
�
−
5
)
⋮
9
⇒(x+4)(x−5)⋮9
Lại có
�
(
�
)
⋮
9
P(x)⋮9 nên
21
⋮
9
21⋮9, vô lí.
Vậy điều giả sử là sai \Rightarrow x^2+x+1⋮̸9
b) Vì x^2+x+1⋮̸9 nên
�
≤
1
⇒
�
∈
{
0
;
1
}
y≤1⇒y∈{0;1}
Nếu
�
=
0
⇒
�
2
+
�
+
1
=
1
y=0⇒x
2
+x+1=1
⇔
�
(
�
+
1
)
=
0
⇔x(x+1)=0
⇔
[
�
=
0
(
�
ℎ
ậ
�
)
�
=
−
1
(
�
�
ạ
�
)
⇔[
x=0(nhận)
x=−1(loại)
Nếu
�
=
1
y=1
⇒
�
2
+
�
+
1
=
3
⇒x
2
+x+1=3
⇔
�
2
+
�
−
2
=
0
⇔x
2
+x−2=0
⇔
(
�
−
1
)
(
�
+
2
)
=
0
⇔(x−1)(x+2)=0
⇔
[
�
=
1
(
�
ℎ
ậ
�
)
�
=
−
2
(
�
�
ạ
�
)
⇔[
x=1(nhận)
x=−2(loại)
Vậy ta tìm được các cặp số (x; y) thỏa ycbt là
(
0
;
0
)
;
(
1
;
1
)
(0;0);(1;1)
Nhận xét: 6x2 và 2014 là số chẵn nên 35y2 cũng chẵn → y2 chẵn → y chẵn
Mặt khác: Từ 6x2 + 35y2 = 2014 nên 35y2 ≤ 2014 → y2 ≤ 58
Vậy y có thể nhận các giá trị: 0; 1; 2; 3; 4; 5; 6; 7.
Do y chẵn nên y có thể nhận các giá trị: 0; 2; 4; 6
Thay lần lượt các giá trị có thể nhận của y đề không tìm được giá trị của x.
Kết luận: Không tìm được các số tự nhiên x; y thoả mãn: 6x2 + 35y2 = 2014
Nhận xét: 6x2 và 2014 là số chẵn nên 35y2 cũng chẵn → y2 chẵn → y chẵn
Mặt khác: Từ 6x2 + 35y2 = 2014 nên 35y2 ≤ 2014 → y2 ≤ 58
Vậy y có thể nhận các giá trị: 0; 1; 2; 3; 4; 5; 6; 7.
Do y chẵn nên y có thể nhận các giá trị: 0; 2; 4; 6
Thay lần lượt các giá trị có thể nhận của y đề không tìm được giá trị của x.
Kết luận: Không tìm được các số tự nhiên x; y thoả mãn: 6x2 + 35y2 = 2014
Nhận xét: 6x2 và 2014 là số chẵn nên 35y2 cũng chẵn → y2 chẵn → y chẵn
Mặt khác: Từ 6x2 + 35y2 = 2014 nên 35y2 ≤ 2014 → y2 ≤ 58
Vậy y có thể nhận các giá trị: 0; 1; 2; 3; 4; 5; 6; 7.
Do y chẵn nên y có thể nhận các giá trị: 0; 2; 4; 6
Thay lần lượt các giá trị có thể nhận của y đề không tìm được giá trị của x.
Kết luận: Không tìm được các số tự nhiên x; y thoả mãn: 6x2 + 35y2 = 2014