K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2019

đây là để học chứ hok phải chửi âu nha bn mất ls vừa thui

9 tháng 9 2017

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

10 tháng 12 2017

Thanks bạn

DD
16 tháng 12 2020

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé. 

DD
23 tháng 10 2021

\(2+2^2+2^3+...+2^{11}+2^{12}\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+\left(2^7+2^8+2^9\right)+\left(2^{10}+2^{11}+2^{12}\right)\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+2^7\left(1+2+2^2\right)+2^{10}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+2^7+2^{10}\right)\)chia hết cho \(7\).

24 tháng 10 2021

bạn có thể giảng cho mình được ko,chép thì chưa hiểu bài

17 tháng 9 2017

hbewjfewi

11 tháng 1 2020

Câu 3 = (5 mũ 51 - 1) : 4

13 tháng 10 2023

\(=\left(1+2+2^2+2^3\right)+2^4\left(1+2+2^2+2^3\right)+....+2^{92}\left(1+2+2^2+2^3\right)\)

\(=15+15.2^4+...+15.2^{92}\)

\(=15\left(1+2^4+...+2^{92}\right)⋮15\left(đpcm\right)\)

13 tháng 10 2023

giúp mình đi :))

 

24 tháng 1 2021

cho mik hỏi câu này nữa   a= 2+2 mũ 3 + 2 mũ 5 +.....+2 mũ 51

19 tháng 7 2021

\(S=2^1+2^2+2^3+2^4+2^5+2^6+..+2^{28}+2^{29}+2^{30}\) 

\(S=2.\left(1+2+2^2\right)+2^4.\left(1+2+2^2\right)+...+2^{28}.\left(1+2+2^2\right)\) 

\(S=\left(1+2+2^2\right).\left(2+2^4+...+2^{28}\right)\) 

\(S=7.\left(2+2^4+...+2^{28}\right)\) 

⇒ \(S⋮7\)   ( điều phải chứng minh ) 

19 tháng 7 2021

S=21+22+23+...+230

S=(21+22+23)+(24+25+26)+...+(228+229+230)

S=7.2+7.24+...+7.228

S=7.(2+24+...+228)

⇒S⋮7

15 tháng 12 2017

bạn giải được chưa thì giúp mình với

10 tháng 6 2018

P=3+2^2(2+1)+2^4(2+1)+2^6(2+1)

=3(1+2^2+2^4+2^6)

=>đpcm

16 tháng 3 2020

\(B=2+2^2+2^3+2^4+...+2^{10}\)

=>\(B=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)

=>\(B=2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)

=>\(B=3\left(2+2^3+...+2^9\right)⋮3\left(đpcm\right)\)

Trả lời:

\(B=2+2^2+2^3+2^4+....2^9+2^{10}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\) (Phần này là nhóm các lũy thừa có cùng cơ số 2 vào các nhóm sao cho tổng nhóm đầu tiên chia hết cho 3 thì mấy nhóm sau với số số hạng tương tự nhóm 1 thì oke giải tiếp như sau)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)

\(=3\left(2+2^3+...+2^9\right)\)

Vì \(3⋮3\Rightarrow3\left(2+2^3+...+2^9\right)⋮3\)

=> đpcm

Vậy B chia hết cho 3

#Huyền Anh