Cho \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
CMR : \(\frac{ak^2+bk=c}{xk^2+yk+x}\)không phụ thuộc vào k
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=\frac{ak^2}{xk^2}=\frac{bk}{yk}=\frac{ak^2+bk+c}{xk^2+yk+z}\)
Ta thấy tỉ số luôn bằng giá trị bang đầu là: \(\frac{a}{x};\frac{b}{y};\frac{c}{z}\) . Hay ko phụ thuộc vào giá trị \(k\)
Hok tốt
Ta có : \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=\frac{ak^2}{xk^2}=\frac{bk}{yk}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có : \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=\frac{ak^2}{xk^2}=\frac{bk}{yk}=\frac{ak^2+bk+c}{xk^2+yk+z}\)
hay \(\frac{a}{b}=\frac{ak^2+bk+c}{xk^2+yk+z}\)
Vậy tỉ số \(\frac{ak^2+bk+c}{xk^2+yk+z}\) ko phụ thuộc vào giá trị của k
Câu hỏi của Oo_ Love is a beautiful pain _oO - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo link trên nhé!
Đặt \(\dfrac{a}{x}\)=\(\dfrac{b}{y}\)=\(\dfrac{c}{z}\)=m
\(\Rightarrow\)a=xm ; b=ym ; c=zm
Thay a=xm ; b=ym ; c=zm vào \(\dfrac{ak^2+bk+c}{xk^2+yk+z}\)ta có:
\(\dfrac{ak^2+bk+c}{xk^2+yk+z}\)=\(\dfrac{xmk^2+ymk+zm}{xk^2+yk+z}\)=\(\dfrac{m\left(xk^2+yk+z\right)}{xk^2+yk+z}\)=m
\(\Rightarrow\)đpcm
\(\text{Đặt }\frac{m}{a}=\frac{n}{b}=\frac{k}{c}=l,\text{ ta có: }\)
\(m=al,n=bl,k=cl\)
\(A=\frac{alx+bly+clz}{ax+by+cz}=\frac{l\left(ax+by+cz\right)}{ax+by+cz}=l\)
Vậy..
\(2,2.\left(x+y\right)=5.\left(y+z\right)=3.\left(x+z\right)\Leftrightarrow\frac{x+y}{5}=\frac{y+z}{2},\frac{y+z}{3}=\frac{x+z}{5}\)
\(\Leftrightarrow\frac{x+y}{15}=\frac{y+z}{6}=\frac{x+z}{10}=\frac{y+z-x-z}{6-10}=\frac{y-x}{-4}=\frac{x-y}{4}=\frac{x+y-x-z}{15-10}=\frac{y-z}{5}\)
\(\Rightarrow\frac{x-y}{4}=\frac{y-z}{5}\left(đpcm\right)\)
1.
Ta có x+y+z=0
=>x+y=-z; x+z=-y; y+z=-x.
\(\left(\frac{x}{y}+1\right)\left(\frac{y}{z}+1\right)\left(\frac{z}{x}+1\right)\)\(=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{z+x}{x}\)\(=-\frac{xyz}{xyz}=-1\)
2) a+b+c=0 <=> (a+b+c)^2=0
<=> a^2+b^2+c^2+2(ab+bc+ca)=0
VT >= ab+bc+ca+2(ab+bc+ca)
=> 0 >= 3(ab+bc+ca)
<=> 0 >= (ab+bc+ca)
Dấu "=" xảy ra khi a=b=c=0
a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Ta có \(\frac{ax+by}{za+bt}=\frac{bkx+by}{bkz+bt}=\frac{b\left(kx+y\right)}{b\left(kz+t\right)}=\frac{kx+y}{kz+t}\)(1)
\(\frac{cx+yd}{cz+dt}=\frac{dkx+yd}{dkz+dt}=\frac{d\left(kx+y\right)}{d\left(kz+t\right)}=\frac{kx+y}{kz+t}\)(2)
Từ (1) và (2) => đpcm.
b) Đặt \(\frac{a}{a_1}=\frac{b}{b_1}=\frac{c}{c_1}=k\Rightarrow a=a_1k;b=b_1k;c=c_1k\)thay vào p;
=> \(p=\frac{a_1kx^2+b_1kx+c_1k}{a_1x^2+b_1x+c_1}=\frac{k\left(a_1x^2+b_1x+c\right)}{a_1x^2+b_1x+c_1}=k\)
Vậy p không phụ thuộc x.
3) \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\)
\(\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)\left(a+b+c\right)=a+b+c\)
\(\dfrac{a^2+a\left(b+c\right)}{b+c}+\dfrac{b^2+b\left(a+c\right)}{a+c}+\dfrac{c^2+c\left(a+b\right)}{a+b}=a+b+c\)
\(\dfrac{a^2}{b+c}+a+\dfrac{b^2}{a+c}+b+\dfrac{c^2}{a+b}+c=a+b+c\)
\(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}=0\)
Vậy: \(P=0\)
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
Bài này có trong câu hỏi tương tự và đã được olm.vn bình chọn nhé
Mình chỉ làm lại cho bạn dễ coi thôi
Đặt \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=k\)
Khi đó \(a=kx;b=yk;c=zk\)
Suy ra \(\frac{ak^2+bk+c}{xk^2+yk+z}=\frac{xk.k^2+yk.k+zk}{x.k^2+yk+z}=\frac{xk^3+yk^2+zk}{xk^2+yk+z}=\frac{k.\left(xk^2+yk+z\right)}{xk^2+yk+z}=k\)
Do đó giá trị biểu thức không phụ thuộc vào k
Vậy..
bạn viết sai đề rùi