cho hình vẽ . chững minh MN = NK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


M N K A B I
a) Áp dụng định lý pytago vào \(\Delta MNK\) vuông tại M có:
\(NK^2=NM^2+MK^2\)
\(\Rightarrow NK^2=9^2+12^2\)
\(\Rightarrow NK=15\)
b) Xét \(\Delta NMK\) vuông tại M và \(\Delta IMK\) vuông tại M có:
MK chung
\(NM=IM\left(gt\right)\)
\(\Rightarrow\Delta NMK=\Delta IMK\left(cgv-cgv\right)\)
\(\Rightarrow\widehat{NKM}=\widehat{IKM}\)
hay \(\widehat{AKM}=\widehat{BKM}\)
Xét \(\Delta MAK\) vuông tại A và \(\Delta MBK\) vuông tại B có:
\(\widehat{AKM}=\widehat{BKM}\) (c/m trên)
MK chung
\(\Rightarrow\Delta MAK=\Delta MBK\left(ch-gn\right)\)
c) Vì \(\Delta MAK=\Delta MBK\)
\(\Rightarrow AK=BK\Rightarrow\Delta ABK\) cân tại K
\(\Rightarrow\) \(\widehat{KAB}=\widehat{KBA}\)
Áp dụng tc tổng 3 góc trog 1 t/g ta có:
\(\widehat{KAB}+\widehat{KBA}+\widehat{NKI}=180^o\)
\(\Rightarrow\widehat{KAB}=\dfrac{180^o-\widehat{NKI}}{2}\left(1\right)\) (đoạn này hơi tắt)
Do \(\Delta NMK=\Delta IMK\)
\(\Rightarrow NK=IK\Rightarrow\Delta NKI\) cân tại K
\(\Rightarrow\widehat{KNI}=\widehat{KIN}\)
Áp dng tc tổng 3 góc trog 1 t/g ta có:
\(\widehat{KNI}+\widehat{KIN}+\widehat{NKI}=180^o\)
\(\Rightarrow\widehat{KNI}=\dfrac{180^o-\widehat{NKI}}{2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\widehat{KAB}=\widehat{KNI}\)
mà 2 góc này ở vị trí đồng vị nên AB // NI .
K 9 cm 12 cm M N K I A 1 2 3 4 B 1 2 1 1
a) Ta có: ΔMNK vuông tại M.
\(\Rightarrow NK^2=MN^2+MK^2\)
\(\Rightarrow NK^2=9^2+12^2\)
\(\Rightarrow NK^8=225\)
\(\Rightarrow NK=\sqrt{225}=15\left(cm\right)\)
b) Vì MI là tia đối của tia MN.
\(\Rightarrow\) 3 điểm N, M, I thẳng hàng.
\(\Rightarrow\widehat{M_{12}}=\widehat{M_{34}}\)
Xét ΔMNK và ΔMIK có:
+ MN = MI (gt)
+ \(\widehat{M_{12}}=\widehat{M_{34}}\) (cmt)
+ MK là cạnh chung.
\(\Rightarrow\) ΔMNK = ΔMIK (c-g-c)
\(\Rightarrow\) NK = IK (2 cạnh tương ứng)
\(\Rightarrow\) ΔKNI cân tại K.
Xét ΔMAK và ΔMBK có:
+ \(\widehat{K_1}=\widehat{K_2}\) (ΔMNK = ΔMIK)
+ MK là cạnh chung.
+ \(\widehat{A_1}=\widehat{B_1}=90^o\) (kẻ vuông góc)
\(\Rightarrow\) ΔMAK = ΔMBK (cạnh huyền - góc nhọn)

a: NK=15cm
b: Xét ΔKNI có
KM là đường cao
KM là đường trung tuyến
Do đó: ΔKNI cân tại K
c: Xét ΔMAK vuông tại A và ΔMBK vuông tại B có
KM chung
góc AKM=góc BKM
Do đo: ΔMAK=ΔMBK
d: Xét ΔKIN có KB/KI=KA/KN
nên AB//NI

a)Ta có :
Vì Δ MNK vuông M nên NK2 = MN2 + MK2
⇒NK2 = 92 + 122
⇒NK2 = 81 + 144
⇒NK2 = 225
Vậy NK = 15
b)Theo CM trên, ta có :
NK2 = MN2 + MK2
Mà IK2 = MI2 + MK2
MN = MI (gt) ; MK chung
⇒MN2+MK2 = MI2+MK2 hay NK=IK
⇒ΔKNI cân N
c)Ta có :
MK chung(1)
\(\widehat{MAK}=\widehat{MBK}=90^o\)(2)
Xét Δ MNK và Δ MIK, ta có :
MK chung
MI = MN
NK = IK
⇒Δ MNK = Δ MIK(c.c.c)
⇒\(\widehat{MKN}=\widehat{MKI}\)(hai góc tương ứng)(3)
Từ (1), (2) và (3) ⇒ ΔMAK=ΔMBK(cạnh huyền-góc nhọn)
d)Ta thấy : Δ MNK vuông M hay KM ⊥NI+
Gọi điểm C là điểm giao giữa AB và KM, ta có :
\(\widehat{KCA}+\widehat{KCB}=180^o\)*
Xét ΔKCA và ΔKCB, ta có :
AK=BK(ΔMAK=ΔMBK)
CK chung
\(\widehat{CKA}=\widehat{CKB}\)(Δ MNK = Δ MIK)
⇒ΔKCA = ΔKCB(c.g.c)
⇒\(\widehat{CAK}=\widehat{CBK}\)(hai góc tương ứng)**
Từ * và ** ⇒ \(\widehat{CAK}=\widehat{CBK}=90^o\) hay KM ⊥ AB++
Từ + và ++ ⇒ AB // NI

a) Ta có: \(\widehat{NCK}=\widehat{ACB}\) (đối đỉnh)
Xét 2 tam giác vuông ΔBHM và ΔCKN ta có:
Cạnh huyền: BM = CN (GT)
\(\widehat{MBH}=\widehat{NCK}\left(=\widehat{ACB}\right)\)
=> ΔBHM = ΔCKN (c.h - g.n)
=> MH = NK (2 cạnh tương ứng)
b) Ta có: \(\left\{{}\begin{matrix}MH\perp BC\\NK\perp BC\end{matrix}\right.\left(GT\right)\)
=> MH // NK
\(\Rightarrow\widehat{HMI}=\widehat{KNI}\) (2 góc so le trong)
Xét ΔMHI và ΔNKI ta có:
\(\widehat{MHI}=\widehat{NKI}\left(=90^0\right)\)
MH = NK (cmt)
\(\widehat{HMI}=\widehat{KNI}\left(cmt\right)\)
=> ΔMHI = ΔNKI (g - c - g)
=> MI = NI (2 cạnh tương ứng)
=> I là trung điểm của MN

N M K I A B
a) Áp dụng định lí pi-ta-go vào \(\Delta MNK\)vuông tại M có:
\(NK^2=NM^2+MK^2\Rightarrow NK^2=9^2+12^2\Rightarrow NK=15\)
b) Xét \(\Delta NMK\)vuông tại M và \(\Delta IMK\)vuông tại M có:
MK chung
NM=IM (gt)
\(\Rightarrow\Delta MNK=\Delta IMK\left(cgv-cgv\right)\)
\(\Rightarrow\widehat{NKM}=\widehat{IKM}\)hay \(\widehat{AKM}=\widehat{BKM}\)
Xét \(\Delta MAK\)vuông tại A và \(\Delta MBK\)vuông tại B có:
\(\widehat{AKM}=\widehat{BKM}\)(c/m trên)
MK chung
\(\Rightarrow\Delta MAK=\Delta MBK\left(ch-gn\right)\)
c) Vì \(\Delta MAK=\Delta MBK\)
\(\Rightarrow AK=BK\Rightarrow\Delta ABK\)cân tại K
\(\Rightarrow\widehat{KAB}=\widehat{KBA}\)
Áp dụng tính chất tổng 3 góc trong 1 tam giác có:
\(\widehat{KAB}+\widehat{KBA}+\widehat{NKI}=180^o\)
\(\Rightarrow\widehat{KAB}=\frac{180^o-\widehat{NKI}}{2}\left(1\right)\)
tới đây bn tự làm tiếp

a: BD=5cm
b: Xég ΔBCD vuông tại C và ΔCFB vuông tại F có
góc BDC=góc CBF
Do đó:ΔBCD đồng dạg với ΔCFB
Suy ra: BC/CF=BD/CB
=>3/CF=5/3
=>CF=1,8(cm)