-7/10^2020+-15/10^2021 và b=-15/10^2020+-7/10^2021
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a)= 2021.2021-2020.(2021+1)
= 2021.(2020+1)-2020.(2021+1)
= (2021.2020)+2021-(2020.2021)-2020
= 1
b) B= (1+2-3-4)+(5+6-7-8)+(9+10-11-12)...........+(2017+2018-2019-2020)+2021
B= -4+(-4)+....................(-4)+2021
B= -4x505+2021
B= -2020 + 2021
B = 1

Ta có : A = \(\frac{10^{2020}+1}{10^{2021}+1}\)
=> 10A = \(\frac{10^{2021}+10}{10^{2021}+1}=1+\frac{9}{10^{2021}+1}\)
Lại có : \(B=\frac{10^{2021}+1}{10^{2022}+1}\)
=> \(10B=\frac{10^{2022}+10}{10^{2022}+1}=1+\frac{9}{10^{2022}+1}\)
Vì \(\frac{9}{10^{2022}+1}< \frac{9}{10^{2021}+1}\)
=> \(1+\frac{9}{10^{2022}+1}< 1+\frac{9}{10^{2022}+1}\)
=> 10B < 10A
=> B < A
b) Ta có : \(\frac{2019}{2020+2021}< \frac{2019}{2020}\)
Lại có : \(\frac{2020}{2020+2021}< \frac{2020}{2021}\)
=> \(\frac{2019}{2020+2021}+\frac{2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)
=> \(\frac{2019+2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)
=> B < A

Giải:
Ta có:
A=\(\dfrac{10^{2019}-1}{10^{2020}+1}\)
10A=\(\dfrac{10^{2020}-10}{10^{2020}+1}\)
10A=\(\dfrac{10^{2020}+1-11}{10^{2020}+1}\)
10A=\(1+\dfrac{-11}{10^{2020}+1}\)
Tương tự:
B=\(\dfrac{10^{2020}-1}{20^{2021}+1}\)
10B=\(1+\dfrac{-11}{10^{2021}+1}\)
Vì \(\dfrac{-11}{10^{2020}+1}< \dfrac{-11}{10^{2021}+1}\) nên 10A<10B
⇒A<B
Chúc bạn học tốt!

Lời giải:
$10A=\frac{10^{2021}-10}{10^{2021}-1}=\frac{10^{2021}-1-9}{10^{2021}-1}$
$=1-\frac{9}{10^{2021}-1}>1$
$10B=\frac{10^{2022}+10}{10^{2022}+1}=\frac{10^{2022}+1+9}{10^{2022}+1}$
$=1+\frac{9}{10^{2022}+1}<1$
$\Rightarrow 10A> 1> 10B$
Suy ra $A> B$

a) A=6 -13 +(-14+15+16-17)+(-18+19+20-21)+...+(-2018+2019+2020-2021)+(-2022+2023+2024-2025) +2025
A=-7 +0 +0 +...+0+0 +2025= 2018
B) 7-9+(-10+11+12-13)+(-14+15+16-17)+...+(-2018+2019+2020-2021)+2021
B= -2+0+0+...+0+2021=2019
#Có gì không hiểu thì hỏi nha#

Ta có:
\(10A=\dfrac{10\left(10^{2020}+1\right)}{10^{2021}+1}=\dfrac{10^{2021}+10}{10^{2021}+1}=1+\dfrac{9}{10^{2021}+1}\)
\(10B=\dfrac{10\left(10^{2021}+1\right)}{10^{2022}+1}=\dfrac{10^{2022}+10}{10^{2022}+1}=1+\dfrac{9}{10^{2022}+1}\)
⇒ \(10A>10B\) ( vì \(\dfrac{9}{10^{2021}+1}>\dfrac{9}{10^{2022}+1}\) )
Suy ra: \(A>B\)

\(C=\dfrac{10^{2021}+10-9}{10^{2020}+1}=10-\dfrac{9}{10^{2020}+1}\)
\(D=\dfrac{10^{2022}+10-9}{10^{2021}+1}=10-\dfrac{9}{10^{2021}+1}\)
mà \(10^{2020}+1< 10^{2021}+1\)
nên \(-\dfrac{9}{10^{2020}+1}< -\dfrac{9}{10^{2021}+1}\)
hay C<D

Ta có \(b-a=9.10^{2019}-\dfrac{9}{10^{2021}}>0\Rightarrow b>a\).

A = \(\dfrac{2020}{2021}\) + \(\dfrac{2021}{2022}\) ; B = \(\dfrac{2020+2021}{2021+2022}\)
B = \(\dfrac{2020+2021}{2021+2022}\) = \(\dfrac{2020}{2021+2022}\) + \(\dfrac{2021}{2021+2022}\)
\(\dfrac{2020}{2021}\) > \(\dfrac{2020}{2021+2022}\)
\(\dfrac{2021}{2022}\) > \(\dfrac{2021}{2021+2022}\)
Cộng vế với vế ta có:
A = \(\dfrac{2020}{2021}\) + \(\dfrac{2021}{2022}\) > \(\dfrac{2020}{2021+2022}\) + \(\dfrac{2021}{2021+2022}\) = B
Vậy A > B
A = \(\dfrac{10^{10}-1}{10^{11}-1}\)
A \(\times\) 10 = \(\dfrac{(10^{10}-1)\times10}{10^{11}-1}\) = \(\dfrac{10^{11}-10}{10^{11}-1}\) = 1 - \(\dfrac{9}{10^{11}-1}\) < 1
B = \(\dfrac{10^{10}+1}{10^{11}+1}\)
B \(\times\) 10 = \(\dfrac{(10^{10}+1)\times10}{10^{11}+1}\) = \(\dfrac{10^{11}+10}{10^{11}+1}\) = 1 + \(\dfrac{9}{10^{11}+1}\) > 1
Vì 10 A< 1< 10B
Vậy A < B
\(a)\frac{-7}{10^{2020}}+\frac{-15}{10^{2021}}\)
=\(\frac{-70}{10^{2021}}+\frac{-15}{10^{2021}}\)
=\(\frac{-85}{10^{2021}}\)
\(b)\frac{-15}{10^{2020}}+\frac{-7}{10^{2021}}\)
=\(\frac{-150}{10^{2021}}+\frac{-7}{10^{2021}}\)
=\(\frac{-157}{10^{2021}}\)